A316678 Smallest numbers leading in n steps to a term that repeats itself, according to the rule explained in A316650 (and hereunder in the Comment section).
19, 31, 13, 16, 32, 11, 23, 15, 236, 282, 341, 1047, 787, 419, 286, 626, 557, 498, 1357, 1001, 368, 1921, 917, 2077, 3319, 3457, 5090, 2294, 2144, 3501, 4485, 10661, 16753, 3092, 5252, 3475, 2102, 3572, 656, 1691, 7461, 10445, 4596, 13937, 15964, 25540, 14380
Offset: 1
Examples
19 is the smallest integer leading to itself in 1 step because we have [19/10 = 10*1 + 9]; 31 is the smallest integer ending on a fixed point in 2 steps because 31 leads to 73 [31/4 = 4*7 + 3] (step 1) and 73 to itself [73/10 = 10*7 + 3] (step 2); 13 is the smallest integer ending on a fixed point in 3 steps because 13 leads to 31 [13/4 = 4*3 + 1] (step 1) and 31 leads to 73 in 2 steps (see above); 16 is the smallest integer ending on a fixed point in 4 steps because 16 leads to 22 [16/7 = 7*2 + 2] (step 1), then 22 leads to 52 [22/4 = 4*5+2] (step 2), then 52 leads to 73 [52/7 = 7*7 + 3] (step 3) and 73 to itself [73/10 = 10*7 + 3] (step 4); 32 is the smallest integer ending on a fixed point in 5 steps [32,62,76,511,730]; 11 is the smallest integer ending on a fixed point in 6 steps [11,51,83,76,511,730]; 23 is the smallest integer ending on a fixed point in 7 steps [23,43,61,85,67,52,73]; Etc.
Links
- Jean-Marc Falcoz, Table of n, a(n) for n = 1..301
Crossrefs
Programs
-
Mathematica
Array[Block[{k = 1}, While[Count[#, 0] != 1 &@ Differences@ NestList[FromDigits@ Flatten[IntegerDigits@ # & /@ QuotientRemainder[#, Total[IntegerDigits@ #]]] &, k, #], k++]; k] &, 47] (* Michael De Vlieger, Jul 10 2018 *)
Comments