This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316679 #15 Jul 11 2018 06:42:11 %S A316679 907,5611,4318,26914,12238,76414,34738,138913,555613,2222413,13890013, %T A316679 55560013,222240013,1389000013,5556000013,22224000013,138900000013, %U A316679 555600000013,2222400000013,13890000000013,55560000000013,222240000000013,1389000000000013,5556000000000013,22224000000000013 %N A316679 The integer 907 and its infinite growing pattern (when iterating the rule explained in A316650 and hereunder, in the Comment section). %C A316679 It is conjectured, when iterating the idea explained in A316650 ("Result when n is divided by the sum of its digits and the resulting integer is concatenated to the remainder"), that all integers will end either on a fixed point (the first ones are listed in A052224) or grow forever (like 907 or 1358). %e A316679 907/16 gives 56 with remainder 11; %e A316679 5611/13 gives 431 with remainder 8; %e A316679 4318/16 gives 269 with remainder 14; %e A316679 26914/22 gives 122 with remainder 38; %e A316679 . . . %e A316679 Now from 2222413 on, starts a devilish 0-inflation "from the middle" in a ternary cycle: %e A316679 2222413 %e A316679 13890013 %e A316679 55560013 %e A316679 222240013 %e A316679 1389000013 %e A316679 5556000013 %e A316679 22224000013 %e A316679 138900000013 %e A316679 555600000013 %e A316679 2222400000013 %e A316679 13890000000013 %e A316679 55560000000013 %e A316679 222240000000013 %e A316679 1389000000000013 %e A316679 5556000000000013 %e A316679 22224000000000013 %e A316679 138900000000000013 %e A316679 555600000000000013 %e A316679 2222400000000000013 %e A316679 . . . %e A316679 We have: %e A316679 1389(k zeros)13 %e A316679 5556(k zeros)13 %e A316679 22224(k zeros)13 %e A316679 then: %e A316679 1389(k+2 zeros)13 %e A316679 5556(k+2 zeros)13 %e A316679 22224(k+2 zeros)13 %e A316679 then: %e A316679 1389(k+4 zeros)13 %e A316679 5556(k+4 zeros)13 %e A316679 22224(k+4 zeros)13 %e A316679 Etc. %t A316679 NestList[FromDigits@ Flatten[IntegerDigits@ # & /@ QuotientRemainder[#, Total[IntegerDigits@ #]]] &, 907, 24] (* _Michael De Vlieger_, Jul 10 2018 *) %Y A316679 Cf. A316650 (where the rule is explained) and A316680 (for the number 1358 that generates a similar pattern). %K A316679 base,nonn %O A316679 1,1 %A A316679 _Eric Angelini_ and _Jean-Marc Falcoz_, Jul 10 2018