cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316679 The integer 907 and its infinite growing pattern (when iterating the rule explained in A316650 and hereunder, in the Comment section).

This page as a plain text file.
%I A316679 #15 Jul 11 2018 06:42:11
%S A316679 907,5611,4318,26914,12238,76414,34738,138913,555613,2222413,13890013,
%T A316679 55560013,222240013,1389000013,5556000013,22224000013,138900000013,
%U A316679 555600000013,2222400000013,13890000000013,55560000000013,222240000000013,1389000000000013,5556000000000013,22224000000000013
%N A316679 The integer 907 and its infinite growing pattern (when iterating the rule explained in A316650 and hereunder, in the Comment section).
%C A316679 It is conjectured, when iterating the idea explained in A316650 ("Result when n is divided by the sum of its digits and the resulting integer is concatenated to the remainder"), that all integers will end either on a fixed point (the first ones are listed in A052224) or grow forever (like 907 or 1358).
%e A316679 907/16 gives 56 with remainder 11;
%e A316679 5611/13 gives 431 with remainder 8;
%e A316679 4318/16 gives 269 with remainder 14;
%e A316679 26914/22 gives 122 with remainder 38;
%e A316679 . . .
%e A316679 Now from 2222413 on, starts a devilish 0-inflation "from the middle" in a ternary cycle:
%e A316679 2222413
%e A316679 13890013
%e A316679 55560013
%e A316679 222240013
%e A316679 1389000013
%e A316679 5556000013
%e A316679 22224000013
%e A316679 138900000013
%e A316679 555600000013
%e A316679 2222400000013
%e A316679 13890000000013
%e A316679 55560000000013
%e A316679 222240000000013
%e A316679 1389000000000013
%e A316679 5556000000000013
%e A316679 22224000000000013
%e A316679 138900000000000013
%e A316679 555600000000000013
%e A316679 2222400000000000013
%e A316679 . . .
%e A316679 We have:
%e A316679 1389(k zeros)13
%e A316679 5556(k zeros)13
%e A316679 22224(k zeros)13
%e A316679 then:
%e A316679 1389(k+2 zeros)13
%e A316679 5556(k+2 zeros)13
%e A316679 22224(k+2 zeros)13
%e A316679 then:
%e A316679 1389(k+4 zeros)13
%e A316679 5556(k+4 zeros)13
%e A316679 22224(k+4 zeros)13
%e A316679 Etc.
%t A316679 NestList[FromDigits@ Flatten[IntegerDigits@ # & /@ QuotientRemainder[#, Total[IntegerDigits@ #]]] &, 907, 24] (* _Michael De Vlieger_, Jul 10 2018 *)
%Y A316679 Cf. A316650 (where the rule is explained) and A316680 (for the number 1358 that generates a similar pattern).
%K A316679 base,nonn
%O A316679 1,1
%A A316679 _Eric Angelini_ and _Jean-Marc Falcoz_, Jul 10 2018