This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316680 #16 Jul 15 2018 14:03:16 %S A316680 1358,7915,35917,143617,65281,29677,95710,435010,334624,152104,117004, %T A316680 90004,69235,276910,1107610,6922510,27690010,110760010,692250010, %U A316680 2769000010,11076000010,69225000010,276900000010,1107600000010,6922500000010,27690000000010,110760000000010,692250000000010,2769000000000010 %N A316680 The integer 1358 and its infinite continuation (when iterating the rule explained in A316650 and in the Comment section here). %C A316680 It is conjectured, when iterating the idea explained in A316650 ("Result when n is divided by the sum of its digits and the resulting integer is concatenated with the remainder"), that all integers will end either on a fixed point (the first ones are listed in A052224) or grow forever (like 907 or 1358). %e A316680 1358/17 gives 79 with remainder 15; %e A316680 7915/22 gives 359 with remainder 17; %e A316680 35917/25 gives 1436 with remainder 17; %e A316680 143617/22 gives 6528 remainder 1; %e A316680 ... %e A316680 After 6922510 starts a devilish inflation "from the middle", in a ternary cycle: %e A316680 6922510 %e A316680 27690010 %e A316680 110760010 %e A316680 692250010 %e A316680 2769000010 %e A316680 11076000010 %e A316680 69225000010 %e A316680 276900000010 %e A316680 1107600000010 %e A316680 6922500000010 %e A316680 27690000000010 %e A316680 110760000000010 %e A316680 692250000000010 %e A316680 2769000000000010 %e A316680 11076000000000010 %e A316680 69225000000000010 %e A316680 276900000000000010 %e A316680 1107600000000000010 %e A316680 6922500000000000010 %e A316680 ... %e A316680 We have: %e A316680 2769(k zeros)10 %e A316680 11076(k zeros)10 %e A316680 69225(k zeros)10 %e A316680 then: %e A316680 2769(k+2 zeros)10 %e A316680 11076(k+2 zeros)10 %e A316680 69225(k+2 zeros)10 %e A316680 then: %e A316680 2769(k+4 zeros)10 %e A316680 11076(k+4 zeros)10 %e A316680 69225(k+4 zeros)10 %e A316680 Etc. %t A316680 NestList[FromDigits@ Flatten[IntegerDigits@ # & /@ QuotientRemainder[#, Total[IntegerDigits@ #]]] &, 1358, 28] (* _Michael De Vlieger_, Jul 10 2018 *) %Y A316680 Cf. A316650 (where the rule is explained). %Y A316680 Cf. A316679 (for an equivalent pattern produced by 907). %K A316680 base,nonn %O A316680 1,1 %A A316680 _Eric Angelini_ and _Jean-Marc Falcoz_, Jul 10 2018