cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316680 The integer 1358 and its infinite continuation (when iterating the rule explained in A316650 and in the Comment section here).

This page as a plain text file.
%I A316680 #16 Jul 15 2018 14:03:16
%S A316680 1358,7915,35917,143617,65281,29677,95710,435010,334624,152104,117004,
%T A316680 90004,69235,276910,1107610,6922510,27690010,110760010,692250010,
%U A316680 2769000010,11076000010,69225000010,276900000010,1107600000010,6922500000010,27690000000010,110760000000010,692250000000010,2769000000000010
%N A316680 The integer 1358 and its infinite continuation (when iterating the rule explained in A316650 and in the Comment section here).
%C A316680 It is conjectured, when iterating the idea explained in A316650 ("Result when n is divided by the sum of its digits and the resulting integer is concatenated with the remainder"), that all integers will end either on a fixed point (the first ones are listed in A052224) or grow forever (like 907 or 1358).
%e A316680 1358/17 gives 79 with remainder 15;
%e A316680 7915/22 gives 359 with remainder 17;
%e A316680 35917/25 gives 1436 with remainder 17;
%e A316680 143617/22 gives 6528 remainder 1;
%e A316680 ...
%e A316680 After 6922510 starts a devilish inflation "from the middle", in a ternary cycle:
%e A316680 6922510
%e A316680 27690010
%e A316680 110760010
%e A316680 692250010
%e A316680 2769000010
%e A316680 11076000010
%e A316680 69225000010
%e A316680 276900000010
%e A316680 1107600000010
%e A316680 6922500000010
%e A316680 27690000000010
%e A316680 110760000000010
%e A316680 692250000000010
%e A316680 2769000000000010
%e A316680 11076000000000010
%e A316680 69225000000000010
%e A316680 276900000000000010
%e A316680 1107600000000000010
%e A316680 6922500000000000010
%e A316680 ...
%e A316680 We have:
%e A316680 2769(k zeros)10
%e A316680 11076(k zeros)10
%e A316680 69225(k zeros)10
%e A316680 then:
%e A316680 2769(k+2 zeros)10
%e A316680 11076(k+2 zeros)10
%e A316680 69225(k+2 zeros)10
%e A316680 then:
%e A316680 2769(k+4 zeros)10
%e A316680 11076(k+4 zeros)10
%e A316680 69225(k+4 zeros)10
%e A316680 Etc.
%t A316680 NestList[FromDigits@ Flatten[IntegerDigits@ # & /@ QuotientRemainder[#, Total[IntegerDigits@ #]]] &, 1358, 28] (* _Michael De Vlieger_, Jul 10 2018 *)
%Y A316680 Cf. A316650 (where the rule is explained).
%Y A316680 Cf. A316679 (for an equivalent pattern produced by 907).
%K A316680 base,nonn
%O A316680 1,1
%A A316680 _Eric Angelini_ and _Jean-Marc Falcoz_, Jul 10 2018