cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316696 Number of lone-child-avoiding locally disjoint rooted trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 2, 4, 11, 27, 80, 218, 654, 1923, 5924, 18310, 58176, 186341, 606814, 1993420, 6618160, 22134640
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2018

Keywords

Comments

A rooted tree is lone-child-avoiding if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root.

Examples

			The a(4) = 11 rooted trees:
  4,
  (13),
  (22),
  (1(12)), (2(11)), (112),
  (1(1(11))), (1(111)), ((11)(11)), (11(11)), (1111).
		

Crossrefs

Matula-Goebel numbers of locally disjoint rooted trees are A316495.
The case where all leaves are 1's is A316697.
Lone-child-avoiding locally disjoint rooted trees are A331680.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],disjointQ],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(16)-a(17) from Robert Price, Sep 16 2018
Terminology corrected by Gus Wiseman, Feb 06 2020