This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316709 #10 Dec 11 2019 06:46:17 %S A316709 5,169,5741,195025,6625109,225058681,7645370045,259717522849, %T A316709 8822750406821,299713796309065,10181446324101389,345869461223138161, %U A316709 11749380235262596085,399133058537705128729,13558774610046711780701,460599203683050495415105,15646814150613670132332869,531531081917181734003902441,18056409971033565286000350125 %N A316709 Bisection of the odd-indexed Pell numbers A001853: part 2. %C A316709 The other part of this bisection is given in A316708. %H A316709 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A316709 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (34,-1). %F A316709 a(n) = Pell(4*n+3) = A000129(4*n+3) = A001653(2*(n+1)), n >= 0. %F A316709 a(n) = 34*a(n-1) - a(n-2), with a(-1) = and a(0) = 5. %F A316709 a(n) = 5*S(n, 34) - S(n-1, 34), where the Chebyshev polynomial S(n, 34) = A029547(n), n >= 0, with S(-1, x) = 0. %F A316709 G.f.: (5 - x)/(1- 34*x + x^2). %o A316709 (PARI) x='x+O('x^99); Vec((5-x)/(1-34*x+x^2)) \\ _Altug Alkan_, Jul 11 2018 %Y A316709 Cf. A000129, A001653, A029547, A316708. %K A316709 nonn,easy %O A316709 0,1 %A A316709 _Wolfdieter Lang_, Jul 11 2018