cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316713 Unique representation of nonnegative numbers by iterated tribonacci A, B and C sequences.

This page as a plain text file.
%I A316713 #16 Jan 16 2019 11:13:14
%S A316713 1,21,121,31,1121,221,131,11121,2121,1221,321,1131,231,111121,21121,
%T A316713 12121,3121,11221,2221,1321,11131,2131,1231,331,1111121,211121,121121,
%U A316713 31121,112121,22121,13121,111221,21221,12221,3221,11321,2321,111131,21131,12131,3131,11231,2231,1331,11111121,2111121,1211121,311121,1121121,221121,131121,1112121,212121,122121,32121,113121,23121,1111221,211221,121221,31221,112221,22221,13221,111321,21321,12321
%N A316713 Unique representation of nonnegative numbers by iterated tribonacci A, B and C sequences.
%C A316713 This representation is the tribonacci A000073 analog of the Wythoff representation of numbers (A189921 or A317208) for the Fibonacci case.
%C A316713 The complementary and disjoint sets A, B and C are given by the sequences A278040, A278039, and A278041, respectively.
%C A316713 The present representation uses 1 for B, 2 for A and 3 for C numbers. The brackets for sequence iteration and the final argument 0 have to be added. E.g.: a(0) = 1 for B(1),  a(1) = 21 for A(B(0)), a(2) = 121 for B(A(B(0))), a(3) = 31 for C(B(0)), ...
%C A316713 An equivalent such representation is given by A317206 using different complementary sequences A, B and C, related to our B = A278039,  A = A278040, and C = A278041: A(n) = A003144(n) = A278039(n-1) + 1, B(n) = A003145(n) =  A278040(n-1) + 1, C(n) = A003146(n)  =  A278041(n-1) + 1 with n >= 1.
%C A316713 The length of the string a(n) is A316714(n). The number of B, A and C sequences used for the ABC-representation of n (that is the number of 1s, 2s and 3s of a(n)) is A316715, A316716 and A316717, respectively.
%H A316713 Wolfdieter Lang, <a href="https://arxiv.org/abs/1810.09787">The Tribonacci and ABC Representations of Numbers are Equivalent</a>, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
%e A316713 The complementary and disjoint sequences A, B, C begin, for n >= 0:
%e A316713 n: 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  16  17  18  19  20  21  22 ...
%e A316713 A: 1  5  8 12 14 18 21 25 29 32 36 38 42 45 49 52  56  58  62  65  69  73  76 ...
%e A316713 B: 0  2  4  6  7  9 11 13 15 17 19 20 22 24 26 28  30  31  33  35  37  39  41 ...
%e A316713 C: 3 10 16 23 27 34 40 47 54 60 67 71 78 84 91 97 104 108 115 121 128 135 141 ...
%e A316713 ---------------------------------------------------------------------------------
%e A316713 The ABC representations begin:
%e A316713                                               #(1)   #(2)    #(3)   L(a(n))
%e A316713            a(n)                             A316715 A316716 A316717 A316714
%e A316713 n = 0:       1                  B(0) =  0      1      0       0       1
%e A316713 n = 1:      21               A(B(0)) =  1      1      1       0       2
%e A316713 n = 2:     121            B(A(B(0))) =  2      2      1       0       3
%e A316713 n = 3:      31               C(B(0)) =  3      1      0       1       2
%e A316713 n = 4:    1121         B(B(A(B(0)))) =  4      3      1       0       4
%e A316713 n = 5:     221            A(A(B(0))) =  5      1      2       0       3
%e A316713 n = 6:     131            B(C(B(0))) =  6      2      0       1       3
%e A316713 n = 7:   11121      B(B(B(A(B(0))))) =  7      4      1       0       5
%e A316713 n = 8:    2121         A(B(A(B(0)))) =  8      2      2       0       4
%e A316713 n = 9:    1221         B(A(A(B(0)))) =  9      2      2       0       4
%e A316713 n = 10:    321            C(A(B(0))) = 10      1      1       1       3
%e A316713 n = 11:   1131         B(B(C(B(0)))) = 11      3      0       1       4
%e A316713 n = 12:    231            A(C(B(0))) = 12      1      1       1       3
%e A316713 n = 13: 111121   B(B(B(B(A(B(0)))))) = 13      5      1       0       6
%e A316713 n = 14:  21121      A(B(B(A(B(0))))) = 14      3      2       0       5
%e A316713 n = 15:  12121      B(A(B(A(B(0))))) = 15      3      2       0       5
%e A316713 n = 16:   3121         C(B(A(B(0)))) = 16      2      1       1       4
%e A316713 n = 17:  11221      B(B(A(A(B(0))))) = 17      3      2       0       5
%e A316713 n = 18:   2221         A(A(A(B(0)))) = 18      1      3       0       4
%e A316713 n = 19:   1321         B(C(A(B(0)))) = 19      2      1       1       4
%e A316713 n = 20:  11131      B(B(B(C(B(0))))) = 20      4      0       1       5
%e A316713 ...
%e A316713 ----------------------------------------------------------------------------
%Y A316713 Cf. A000073, A003144, A003145, A003146, A189921, A317208, A278040, A278039,  A278041, A316714, A316715, A316716, A316717, A317208.
%K A316713 nonn,easy
%O A316713 0,2
%A A316713 _Wolfdieter Lang_, Sep 11 2018