cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316719 Expansion of Product_{k=1..7} (1+x^(2*k-1))/(1-x^(2*k)).

This page as a plain text file.
%I A316719 #12 Jul 12 2018 03:09:25
%S A316719 1,1,1,2,3,4,5,7,10,13,16,21,28,35,43,54,68,83,100,122,149,179,212,
%T A316719 253,303,357,417,490,575,668,772,893,1033,1187,1356,1551,1773,2015,
%U A316719 2281,2583,2922,3291,3695,4147,4650,5197,5791,6450,7179,7966,8818,9757,10785,11893
%N A316719 Expansion of Product_{k=1..7} (1+x^(2*k-1))/(1-x^(2*k)).
%H A316719 Seiichi Manyama, <a href="/A316719/b316719.txt">Table of n, a(n) for n = 0..10000</a>
%t A316719 nmax=60; CoefficientList[Series[Product[(1 + x^(2 k - 1)) / (1 - x^(2 k)), {k, 1, 7}], {x, 0, nmax}], x] (* _Vincenzo Librandi_, Jul 12 2018 *)
%o A316719 (PARI) N=99; x='x+O('x^N); Vec(prod(k=1, 7, (1+x^(2*k-1))/(1-x^(2*k))))
%Y A316719 Product_{k=1..b} (1+x^(2*k-1))/(1-x^(2*k)): A000012 (b=1), A004525(n+1) (b=2), A000933(n+5) (b=3), A089597 (b=4), A014670 (b=5), A316718 (b=6), this sequence (b=7), A316720 (b=8), A316721 (b=9), A316722 (b=10).
%Y A316719 Cf. A316675.
%K A316719 nonn
%O A316719 0,4
%A A316719 _Seiichi Manyama_, Jul 11 2018