A316766 Number of series-reduced locally stable rooted identity trees whose leaves form an integer partition of n.
1, 1, 2, 3, 6, 13, 30, 72, 180, 458, 1194, 3160, 8459, 22881, 62417, 171526, 474405, 1319395, 3687711, 10352696, 29178988
Offset: 1
Examples
The a(6) = 13 trees: 6, (15), (1(14)), (1(1(13))), (1(1(1(12)))), (1(23)), (2(13)), (3(12)), (123), (1(2(12))), (2(1(12))), (12(12)), (24). Example of non-stable trees are ((12)(123)) and ((12)(12(12))).
Crossrefs
Programs
-
Mathematica
submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}]; nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,stableQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}]; Table[Length[nms[n]],{n,10}]
Extensions
a(18)-a(21) from Robert Price, Sep 14 2018
Comments