A316767 Number of series-reduced locally stable rooted trees whose leaves form the integer partition with Heinz number n.
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 8, 1, 1, 2, 3, 1, 4, 1, 10, 1, 1, 1, 12, 1, 1, 1, 8, 1, 4, 1, 3, 3, 1, 1, 24, 1, 3, 1, 3, 1, 8, 1, 8, 1, 1, 1, 17, 1, 1, 3, 24, 1, 4, 1, 3, 1, 4, 1, 39, 1, 1, 3, 3, 1, 4, 1, 24, 5, 1, 1, 17
Offset: 1
Keywords
Examples
The a(24) = 8 trees: (1(1(12))) (1(2(11))) (2(1(11))) (1(112)) (2(111)) (11(12)) (12(11)) (1112)
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; stableQ[u_]:=Apply[And,Outer[#1==#2||Complement[#2,#1]=!={}&,u,u,1],{0,1}]; gro[m_]:=gro[m]=If[Length[m]==1,List/@m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]]; Table[Length[Select[gro[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],And@@Cases[#,q:{__List}:>stableQ[q],{0,Infinity}]&]],{n,100}]
Comments