A316768 Number of series-reduced locally stable rooted trees whose leaves form an integer partition of n.
1, 2, 4, 11, 29, 91, 284, 950, 3235, 11336, 40370, 146095, 534774, 1977891, 7377235, 27719883
Offset: 1
Examples
The a(5) = 29 trees: 5, (14), (23), (1(13)), (3(11)), (113), (1(22)), (2(12)), (122), (1(1(12))), (1(2(11))), (1(112)), (2(1(11))), (2(111)), ((11)(12)), (11(12)), (12(11)), (1112), (1(1(1(11)))), (1(1(111))), (1((11)(11))), (1(11(11))), (1(1111)), ((11)(1(11))), (11(1(11))), (11(111)), (1(11)(11)), (111(11)), (11111). Missing from this list but counted by A141268 is ((11)(111)).
Crossrefs
Programs
-
Mathematica
submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}]; nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],stableQ],{ptn,Rest[IntegerPartitions[n]]}],{n}]; Table[Length[nms[n]],{n,10}]
Extensions
a(15)-a(16) from Robert Price, Sep 16 2018
Comments