cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316771 Number of series-reduced locally nonintersecting rooted trees whose leaves form the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 4, 0, 1, 0, 2, 1, 4, 1, 0, 1, 1, 1, 6, 1, 1, 1, 4, 1, 4, 1, 2, 2, 1, 1, 8, 0, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 12, 1, 1, 2, 0, 1, 4, 1, 2, 1, 4, 1, 17, 1, 1, 2, 2, 1, 4, 1, 8, 0, 1, 1, 12, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally nonintersecting if the intersection of all branches directly under any given root is empty.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(36) = 6 trees:
  (1(2(12)))
  (2(1(12)))
  (1(122))
  (2(112))
  (12(12))
  (1122)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};
    sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,List/@m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Length[Select[gro[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],And@@Cases[#,q:{__List}:>Intersection@@q=={},{0,Infinity}]&]],{n,100}]