A316773 Triangle read by rows: T(n,m) = Sum_{k=m+1..n} (n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*E(k,m) where E(n,m) is Euler's triangle A173018, T(0,0) = 1, n >= m >= 0.
1, 1, 0, 3, 1, 0, 19, 10, 1, 0, 193, 119, 23, 1, 0, 2721, 1806, 466, 46, 1, 0, 49171, 34017, 10262, 1502, 87, 1, 0, 1084483, 770274, 255795, 47020, 4425, 162, 1, 0, 28245729, 20429551, 7235853, 1539939, 193699, 12525, 303, 1, 0, 848456353, 621858526, 230629024, 54314242, 8273758, 755170, 34912, 574, 1, 0
Offset: 0
Examples
Triangle begins: -------------------------------------------------------------------------- n\k| 0 1 2 3 4 5 6 7 8 9 ------+------------------------------------------------------------------- 0 | 1 1 | 1 0 2 | 3 1 0 3 | 19 10 1 0 4 | 193 119 23 1 0 5 | 2721 1806 466 46 1 0 6 | 49171 34017 10262 1502 87 1 0 7 | 1084483 770274 255795 47020 4425 162 1 0 8 | 28245729 20429551 7235853 1539939 193699 12525 303 1 0 9 | 848456353 621858526 230629024 54314242 8273758 755170 34912 574 1 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- Yuriy Shablya, Dmitry Kruchinin, Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics (2020) Vol. 8, No. 6, 962.
Programs
-
Maple
T := (n,m) -> `if`(n=0, 1, add((n-1)!/(k-1)!*binomial(2*n-k-1, n-1)* combinat:-eulerian1(k, m), k = m+1..n)): for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Sep 04 2020
-
Mathematica
Table[Boole[n == 0] + Sum[(n - 1)!/(k - 1)!*Binomial[2 n - k - 1, n - 1]*Sum[(-1)^j*(m + 1 - j)^k*Binomial[k + 1, j], {j, 0, m}], {k, m + 1, n}], {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 04 2020 *)
-
Maxima
T(n,m):=if m>n then 0 else if n=0 then 1 else sum((n-1)!/(k-1)!*binomial(2*n-k-1,n-1)*sum((-1)^j*(m+1-j)^k*binomial(k+1,j),j,0,m),k,m+1,n);
Formula
E.g.f.: Sum_{n >= m >= 0} T(n, m)/n! * x^n * y^m = E(C(x),y) = (y-1)/(y-exp(C(x)*(y-1))), where E(x,y) is an e.g.f. for Euler's triangle A173018.
Comments