cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316778 a(n) = exp(-1/2) * Sum_{k>=0} H_n(k) / (k!*2^k), where H_n(x) is n-th Hermite polynomial.

Original entry on oeis.org

1, 1, 1, 5, 25, 97, 489, 3285, 22481, 160737, 1293041, 11348933, 105136937, 1033279873, 10808289561, 119401994709, 1385242479137, 16846680046657, 214333419288161, 2844927602028549, 39305588104667321, 564208058072724257, 8400178767847987401, 129509650839484638037
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 13 2018

Keywords

Comments

In general, if m >= 1, b <> 0 and e.g.f. = exp(m*exp(b*x) + q*x^2 + r*x + s) then a(n) ~ b^n * n^(n + r/b) * exp(n/LambertW(n/m) + q*LambertW(n/m)^2 / b^2 - n + s) / (m^(r/b) * sqrt(1 + LambertW(n/m)) * LambertW(n/m)^(n + r/b)). - Vaclav Kotesovec, Jun 29 2022

Crossrefs

Programs

  • Mathematica
    Table[Exp[-1/2]*Sum[HermiteH[n, k]/k!/2^k, {k, 0, Infinity}], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[Exp[Exp[2*x]/2 - x^2 - 1/2], {x, 0, nmax}], x] * Range[0, nmax]!
    Table[Sum[Binomial[n, k] * 2^k * BellB[k, 1/2] * HermiteH[n-k, 0], {k, 0, n}], {n, 0, 20}]

Formula

E.g.f.: exp(exp(2*x)/2 - x^2 - 1/2).
a(n) ~ 2^n * n^n * exp(n/LambertW(2*n) - LambertW(2*n)^2 / 4 - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^n). - Vaclav Kotesovec, Jun 29 2022