cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316780 a(n) is the least positive integer k such that ceiling(sqrt(A046315(n)*k))^2 - A046315(n)*k is a square.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 7, 1, 7, 3, 9, 3, 3, 1, 9, 9, 3, 11, 1, 5, 5, 13, 3, 1, 15, 15, 5, 1, 17, 3, 5, 1, 17, 7, 3, 17, 1, 7, 19, 1, 21, 3, 5, 7, 23, 5, 1, 25, 9, 1, 5, 25, 9, 27, 3, 27, 1, 29, 5, 11, 29, 3, 11, 1, 11, 5, 3, 33, 1, 35, 13
Offset: 1

Views

Author

Arnauld Chevallier, Jul 13 2018

Keywords

Comments

Fermat's factorization helper multiplier for the n-th odd semiprime.
a(n) is the least positive integer such that A046315(n) * a(n) can be factorized with a single iteration of Fermat's factorization method. Using the factorization of a(n), we can then deduce the prime factors of A046315(n). Example for n = 35490: A046315(n) = 199163 and a(n) = 40; ceiling(sqrt(199163*40)) = 2823; 199163*40 = 2823^2 - 2809 = 2823^2 - 53^2 = (2823+53)(2823-53) = 2876*2770, leading to 199163*(2*2*2*5) = (2*2*719)*(2*5*277) and eventually 199163 = 719*277.

Examples

			a(18) = 7 because the 18th odd semiprime is A046315(18) = 93, ceiling(sqrt(93*7))^2 - 93*7 = 25 is a perfect square and 7 is the least positive integer for which this holds.
		

Crossrefs

Cf. A046315.