This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316795 #11 Feb 08 2020 20:41:36 %S A316795 1,1,1,1,2,5,8,17,30,55,101,194,352,663,1227,2275,4225,7877,14600, %T A316795 27158,50414,93666,173972,323286,600353,1115407,2071843,3848794, %U A316795 7149196,13280874,24669606,45827047,85126845,158131764,293742200,545655290,1013598733 %N A316795 Number of aperiodic rooted trees on n nodes with locally distinct multiplicities. %C A316795 An aperiodic rooted tree is an unlabeled rooted tree in which the multiplicities of branches under any given node are relatively prime. A rooted tree has locally distinct multiplicities if the multiset of branches under any given node has all distinct multiplicities. %H A316795 Andrew Howroyd, <a href="/A316795/b316795.txt">Table of n, a(n) for n = 1..100</a> %H A316795 Gus Wiseman, <a href="/A316795/a316795.png">The a(9) = 30 aperiodic trees with locally distinct multiplicities.</a> %e A316795 The a(7) = 8 trees: %e A316795 ((((((o)))))) %e A316795 (((oo(o)))) %e A316795 ((oo((o)))) %e A316795 ((o(o)(o))) %e A316795 ((ooo(o))) %e A316795 (oo(((o)))) %e A316795 (ooo((o))) %e A316795 (oooo(o)) %t A316795 strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],And[UnsameQ@@Length/@Split[#],GCD@@Length/@Split[#]==1]&]]; %t A316795 Table[Length[strut[n]],{n,15}] %o A316795 (PARI) %o A316795 C(v,n)={my(recurse(r,b,g,p,k)=if(!r, g==1, sum(m=1, r, if(!bittest(b,m), sum(i=1, min(r\m, p), my(f=if(i==p, k+1, 1)); if(v[i]>=f, (v[i]-f+1)*self()(r-m*i, bitor(b, 1<<m), gcd(g,m), i, f)/f)))))); recurse(n, 0, 0, #v, 0)} %o A316795 seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=C(v[1..n-1], n-1)); v} \\ _Andrew Howroyd_, Feb 08 2020 %Y A316795 Cf. A000081, A000837, A004111, A301700, A303431, A316793, A316794, A316796. %K A316795 nonn %O A316795 1,5 %A A316795 _Gus Wiseman_, Jul 14 2018 %E A316795 Terms a(26) and beyond from _Andrew Howroyd_, Feb 08 2020