This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316862 #20 Dec 08 2020 04:14:04 %S A316862 1,-1,-7,-201,-13351,-1697705,-369575303,-127249900617, %T A316862 -65286578868455,-47651775381867241,-47688241963081263175, %U A316862 -63505249400026210723209,-109775495351620406817045415,-241236985075124408660287423529,-662075390371447206867029299628807 %N A316862 Expansion of 1/(Sum_{k>=0} (k!)^3 x^k). %H A316862 Seiichi Manyama, <a href="/A316862/b316862.txt">Table of n, a(n) for n = 0..181</a> %F A316862 a(0) = 1, a(n) = -Sum_{k=1..n} (k!)^3 * a(n-k). %F A316862 a(n) ~ -(n!)^3 * (1 - 2/n^3 - 13/n^6 - 39/n^7 - 78/n^8 - 518/n^9 - 3687/n^10 - ...). - _Vaclav Kotesovec_, Dec 08 2020 %t A316862 a[n_] := -Sum[(k!)^3*a[n - k], {k, n}]; a[0] = 1; Array[a, 15, 0] (* _Robert G. Wilson v_, Jul 15 2018 *) %t A316862 nmax = 20; CoefficientList[Series[1/Sum[k!^3 * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Dec 08 2020 *) %Y A316862 1/(Sum_{k>=0} (k!)^b x^k): A167894 (b=1), A113871 (b=2), this sequence (b=3). %Y A316862 Cf. A000442. %K A316862 sign %O A316862 0,3 %A A316862 _Seiichi Manyama_, Jul 15 2018