This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316939 #27 Sep 13 2021 05:37:32 %S A316939 1,2,2,3,4,3,5,7,7,5,8,12,14,12,8,13,20,26,26,20,13,21,33,46,52,46,33, %T A316939 21,34,54,79,98,98,79,54,34,55,88,133,177,196,177,133,88,55,89,143, %U A316939 221,310,373,373,310,221,143,89,144,232,364,531,683,746,683,531,364,232,144,233,376,596,895,1214,1429 %N A316939 Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+2). %e A316939 Triangle begins: %e A316939 1; %e A316939 2, 2; %e A316939 3, 4, 3; %e A316939 5, 7, 7, 5; %e A316939 8, 12, 14, 12, 8; %e A316939 13, 20, 26, 26, 20, 13; %e A316939 21, 33, 46, 52, 46, 33, 21; %e A316939 34, 54, 79, 98, 98, 79, 54, 34; %e A316939 55, 88, 133, 177, 196, 177, 133, 88, 55; %e A316939 ... %p A316939 f:= proc(n,k) option remember; %p A316939 if k=0 or k=n then combinat:-fibonacci(n+2) else procname(n-1,k)+procname(n-1,k-1) fi %p A316939 end proc: %p A316939 for n from 0 to 10 do %p A316939 seq(f(n,k),k=0..n) %p A316939 od; # _Robert Israel_, Sep 20 2018 %t A316939 t={}; Do[r={}; Do[If[k==0||k==n, m=Fibonacci[n + 2], m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t // Flatten %Y A316939 Cf. A316528 (row sums). %Y A316939 Columns k=0..2: A000045, A000071, A001924. %Y A316939 Other Fibonacci borders: A074829, A108617, A316938. %K A316939 nonn,tabl %O A316939 0,2 %A A316939 _Vincenzo Librandi_, Jul 28 2018 %E A316939 Incorrect g.f. removed by _Georg Fischer_, Feb 18 2020