cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316939 Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+2).

This page as a plain text file.
%I A316939 #27 Sep 13 2021 05:37:32
%S A316939 1,2,2,3,4,3,5,7,7,5,8,12,14,12,8,13,20,26,26,20,13,21,33,46,52,46,33,
%T A316939 21,34,54,79,98,98,79,54,34,55,88,133,177,196,177,133,88,55,89,143,
%U A316939 221,310,373,373,310,221,143,89,144,232,364,531,683,746,683,531,364,232,144,233,376,596,895,1214,1429
%N A316939 Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+2).
%e A316939 Triangle begins:
%e A316939    1;
%e A316939    2,  2;
%e A316939    3,  4,   3;
%e A316939    5,  7,   7,   5;
%e A316939    8, 12,  14,  12,   8;
%e A316939   13, 20,  26,  26,  20,  13;
%e A316939   21, 33,  46,  52,  46,  33,  21;
%e A316939   34, 54,  79,  98,  98,  79,  54, 34;
%e A316939   55, 88, 133, 177, 196, 177, 133, 88, 55;
%e A316939   ...
%p A316939 f:= proc(n,k) option remember;
%p A316939   if k=0 or k=n then combinat:-fibonacci(n+2) else procname(n-1,k)+procname(n-1,k-1) fi
%p A316939 end proc:
%p A316939 for n from 0 to 10 do
%p A316939   seq(f(n,k),k=0..n)
%p A316939 od; # _Robert Israel_, Sep 20 2018
%t A316939 t={}; Do[r={}; Do[If[k==0||k==n, m=Fibonacci[n + 2], m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t // Flatten
%Y A316939 Cf. A316528 (row sums).
%Y A316939 Columns k=0..2: A000045, A000071, A001924.
%Y A316939 Other Fibonacci borders: A074829, A108617, A316938.
%K A316939 nonn,tabl
%O A316939 0,2
%A A316939 _Vincenzo Librandi_, Jul 28 2018
%E A316939 Incorrect g.f. removed by _Georg Fischer_, Feb 18 2020