cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316970 Reducible binary polynomials P of degree n>0 with P dividing the polynomial X^(2^n-1)+1, evaluated at X=2 (pseudo-primes in the ring GF(2)[X]).

Original entry on oeis.org

83, 101, 127, 279, 443, 465, 1137, 1207, 1219, 1395, 1453, 1503, 1547, 1561, 1653, 1667, 1787, 1897, 1903, 1975, 2013, 4111, 4169, 4191, 4231, 4255, 4377, 4415, 4445, 4585, 4599, 4673, 4681, 4699, 4763, 4779, 4819, 4849, 4867, 4881, 4895, 4917, 5013, 5021, 5113, 5167, 5173, 5187, 5207, 5339, 5389, 5433, 5447
Offset: 1

Views

Author

Francois R. Grieu, Jul 17 2018

Keywords

Comments

If a binary polynomial P of degree n is irreducible, then demonstrably P divides the polynomial X^(2^n-1)+1.
All irreducible polynomials A014580 pass this test, requiring O(n^3) bit operations and O(n) bits with classical algorithms.
Polynomials which pass this test but are not irreducible form the sequence.
Analog for GF(2)[X] of Fermat pseudoprimes A001567.
When P includes the constant term 1 (as all primitive polynomials do), the test is equivalent to X^(2^n)=X(mod P), which is easier to compute.

Examples

			83, that is 1010011 in binary, represents the polynomial P(X)=X^6+X^4+X+1 of degree n=6. It is in the sequence because X^63+1 == 0 (mod P), and P is reducible since P(X)=(X+1)(X^2+X+1)(X^3+X+1) in GF(2)[X].
		

Crossrefs

Cf. A014580. Subsequence of A091242.

Programs

  • Mathematica
    For[p=3,p<5449,p+=2,P=0;Y=1;m=p;While[m>0,If[OddQ[m],P+=Y;m-=1];Y*=x;m/=2];If[PolynomialRemainder[x^(2^Exponent[P,x]-1),P,x,Modulus->2]==1&&!IrreduciblePolynomialQ[P,Modulus->2],Print[p]]]