This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316983 #19 Jan 16 2024 19:52:24 %S A316983 1,1,2,4,9,17,36,72,155,319,677,1429,3094,6648,14518,31796,70491, %T A316983 156818,352371,795952,1813580,4155367,9594425,22283566,52122379, %U A316983 122631874,290432439,691831161,1658270316,3997272089,9692519896,23631827354,57943821449,142834652193 %N A316983 Number of non-isomorphic self-dual multiset partitions of weight n. %C A316983 Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n, under row and column permutations. %C A316983 The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. %H A316983 Andrew Howroyd, <a href="/A316983/b316983.txt">Table of n, a(n) for n = 0..50</a> %e A316983 Non-isomorphic representatives of the a(4) = 9 self-dual multiset partitions: %e A316983 (1111), %e A316983 (1)(222), (2)(122), (11)(22), (12)(12), %e A316983 (1)(1)(23), (1)(2)(33), (1)(3)(23), %e A316983 (1)(2)(3)(4). %e A316983 The a(4) = 9 square symmetric matrices: %e A316983 . [4] %e A316983 . %e A316983 . [3 0] [2 0] [2 1] [1 1] %e A316983 . [0 1] [0 2] [1 0] [1 1] %e A316983 . %e A316983 . [2 0 0] [1 1 0] [0 1 1] %e A316983 . [0 1 0] [1 0 0] [1 0 0] %e A316983 . [0 0 1] [0 0 1] [1 0 0] %e A316983 . %e A316983 . [1 0 0 0] %e A316983 . [0 1 0 0] %e A316983 . [0 0 1 0] %e A316983 . [0 0 0 1] %o A316983 (PARI) vector(25, n, n--; T(n,n)) \\ T(n,k) defined in A318805. - _Andrew Howroyd_, Jan 16 2024 %Y A316983 Row sums of A320796. %Y A316983 Main diagonal of A318805. %Y A316983 Cf. A000009, A001055, A007716, A007717, A020555, A045778. %Y A316983 Cf. A316974, A316978, A316979, A316980, A316981. %K A316983 nonn %O A316983 0,3 %A A316983 _Gus Wiseman_, Jul 18 2018 %E A316983 Terms a(9) and beyond from _Andrew Howroyd_, Sep 03 2018