This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317012 #17 Jan 27 2021 10:14:43 %S A317012 0,1,10,1316,840124672,6110726696100443604557936, %T A317012 439451426203104201222708341688051362423089952907263634936946272224 %N A317012 Total number of elements in all permutations of [n], [n+1], ... that result in a binary search tree of height n. %C A317012 Empty external nodes are counted in determining the height of a search tree. %H A317012 Alois P. Heinz, <a href="/A317012/b317012.txt">Table of n, a(n) for n = 0..9</a> %H A317012 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Binary search tree</a> %H A317012 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %H A317012 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A317012 a(n) = Sum_{k=n..2^n-1} k * A195581(k,n) = Sum_{k=n..2^n-1} k * A244108(k,n). %e A317012 a(2) = 10 = 2 + 3 + 3 + 2: %e A317012 . %e A317012 2 2 1 %e A317012 / \ / \ / \ %e A317012 1 o 1 3 o 2 %e A317012 / \ ( ) ( ) / \ %e A317012 o o o o o o o o %e A317012 (2,1) (2,1,3) (2,3,1) (1,2) %e A317012 . %p A317012 b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1), %p A317012 add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1)) %p A317012 end: %p A317012 T:= (n, k)-> b(n, k)-b(n, k-1): %p A317012 a:= k-> add(T(n, k)*n, n=k..2^k-1): %p A317012 seq(a(n), n=0..6); %t A317012 b[n_, k_] := b[n, k] = If[n < 2, If[k < n, 0, 1], %t A317012 Sum[Binomial[n-1, r] b[r, k-1] b[n-1-r, k-1], {r, 0, n-1}]]; %t A317012 T[n_, k_] := b[n, k] - b[n, k-1]; %t A317012 a[k_] := Sum[T[n, k] n, {n, k, 2^k - 1}]; %t A317012 a /@ Range[0, 6] (* _Jean-François Alcover_, Jan 27 2021, after _Alois P. Heinz_ *) %Y A317012 Cf. A195581, A227822, A244108, A335922. %K A317012 nonn %O A317012 0,3 %A A317012 _Alois P. Heinz_, Jul 18 2018