This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317014 #15 Sep 05 2018 02:27:35 %S A317014 1,7,49,1,343,14,2401,147,1,16807,1372,21,117649,12005,294,1,823543, %T A317014 100842,3430,28,5764801,823543,36015,490,1,40353607,6588344,352947, %U A317014 6860,35,282475249,51883209,3294172,84035,735,1,1977326743,403536070,29647548,941192,12005,42 %N A317014 Triangle read by rows: T(0,0) = 1; T(n,k) = 7 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0. %C A317014 The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013614 ((1+7*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A027466 ((7+x)^n). %C A317014 The coefficients in the expansion of 1/(1-7x-x^2) are given by the sequence generated by the row sums. %C A317014 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 7.14005494464025913554... ((7+sqrt(53))/2), a metallic mean (see A176439), when n approaches infinity. %D A317014 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 96. %H A317014 Zagros Lalo, <a href="/A317014/a317014.pdf">Left-justified triangle</a> %H A317014 Zagros Lalo, <a href="/A317014/a317014_1.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (1 + 7x)^n</a> %H A317014 Zagros Lalo, <a href="/A317014/a317014_2.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (7 + x)^n</a> %e A317014 Triangle begins: %e A317014 1; %e A317014 7; %e A317014 49, 1; %e A317014 343, 14; %e A317014 2401, 147, 1; %e A317014 16807, 1372, 21; %e A317014 117649, 12005, 294, 1; %e A317014 823543, 100842, 3430, 28; %e A317014 5764801, 823543, 36015, 490, 1; %e A317014 40353607, 6588344, 352947, 6860, 35; %e A317014 282475249, 51883209, 3294172, 84035, 735, 1; %e A317014 1977326743, 403536070, 29647548, 941192, 12005, 42; %e A317014 13841287201, 3107227739, 259416045, 9882516, 168070, 1029, 1; %e A317014 96889010407, 23727920916, 2219448385, 98825160, 2117682, 19208, 49; %e A317014 678223072849, 179936733613, 18643366434, 951192165, 24706290, 302526, 1372, 1; %t A317014 t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten %o A317014 (PARI) T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 7*T(n-1, k)+T(n-2, k-1))); %o A317014 tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Jul 20 2018 %Y A317014 Row sums give A054413. %Y A317014 Cf. A013614, A027466, A176439. %Y A317014 Cf. A000420 (column 0), A027473 (column 1), A027474 (column 2), A140107 (column 3), A139641 (column 4). %K A317014 tabf,nonn,easy %O A317014 0,2 %A A317014 _Zagros Lalo_, Jul 19 2018