This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317024 #18 Aug 21 2021 20:46:23 %S A317024 1,1,2,3,1,4,3,5,1,7,2,5,4,7,3,8,1,9,2,11,1,13,2,15,4,9,5,7,6,11,3,13, %T A317024 4,11,5,8,7,9,8,11,7,10,9,11,10,13,5,16,1,17,2,19,1,23,2,25,1,27,2,29, %U A317024 1,31,2,32,3,16,7,12,11,13,6,17,3,19,4,17,5,19 %N A317024 Lexicographically earliest sequence of positive terms such that for any distinct i and j, lcm(a(i), a(i+1)) and lcm(a(j), a(j+1)) are distinct. %C A317024 See A317025 for the corresponding LCM. %C A317024 This sequence has similarities with A088177. %C A317024 For any n > 0, let g(n) = gcd(a(n), a(n+1)); between 1 and 800000, the function g takes only 5 times a value other than 1. %C A317024 For any n > 0 and prime number p, if p divides a(n+1), then the p-adic valuation of a(n+1) is strictly greater than the p-adic valuation of a(n). %C A317024 This sequence contains infinitely many distinct values. %C A317024 The first occurrence of a prime number p, if not preceded by 1, is followed by 1. %C A317024 The first occurrence of a prime power k, if not preceded by a divisor of k, is followed by 1. %C A317024 If this sequence contains infinitely many 1's, then A317025 is a permutation of the natural numbers. %H A317024 Rémy Sigrist, <a href="/A317024/b317024.txt">Table of n, a(n) for n = 1..10000</a> %H A317024 Rémy Sigrist, <a href="/A317024/a317024.gp.txt">PARI program for A317024</a> %H A317024 Rémy Sigrist, <a href="/A317024/a317024.png">Scatterplot of the ordinal transform of the first 500000 terms</a> %e A317024 The first terms, alongside lcm(a(n), a(n+1)), are: %e A317024 n a(n) lcm(a(n), a(n+1)) %e A317024 -- ---- ----------------- %e A317024 1 1 1 %e A317024 2 1 2 %e A317024 3 2 6 %e A317024 4 3 3 %e A317024 5 1 4 %e A317024 6 4 12 %e A317024 7 3 15 %e A317024 8 5 5 %e A317024 9 1 7 %e A317024 10 7 14 %e A317024 11 2 10 %e A317024 12 5 20 %e A317024 13 4 28 %e A317024 14 7 21 %e A317024 15 3 24 %e A317024 16 8 8 %e A317024 17 1 9 %e A317024 18 9 18 %e A317024 19 2 22 %e A317024 20 11 11 %o A317024 (PARI) See Links section. %Y A317024 Cf. A088177, A317025. %K A317024 nonn %O A317024 1,3 %A A317024 _Rémy Sigrist_, Jul 19 2018