This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317054 #18 Aug 08 2025 07:05:10 %S A317054 1,1,1,10,1,20,1,30,100,1,40,300,1,50,600,1000,1,60,1000,4000,1,70, %T A317054 1500,10000,10000,1,80,2100,20000,50000,1,90,2800,35000,150000,100000, %U A317054 1,100,3600,56000,350000,600000,1,110,4500,84000,700000,2100000,1000000,1,120,5500,120000,1260000,5600000,7000000 %N A317054 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 10 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. %C A317054 The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013617 ((1+10x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A038303 ((10+x)^n). %C A317054 The coefficients in the expansion of 1/(1-x-10*x^2) are given by the sequence generated by the row sums. %C A317054 The row sums are Generalized Fibonacci numbers (see A015446). %C A317054 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.701562118716424343244... ((1+sqrt(41))/2), when n approaches infinity. %D A317054 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 102. %H A317054 Zagros Lalo, <a href="/A317054/a317054.pdf">Left-justified triangle</a> %H A317054 Zagros Lalo, <a href="/A317054/a317054_1.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (1 + 10x)^n</a> %H A317054 Zagros Lalo, <a href="/A317054/a317054_2.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (10 + x)^n</a> %e A317054 Triangle begins: %e A317054 1; %e A317054 1; %e A317054 1, 10; %e A317054 1, 20; %e A317054 1, 30, 100; %e A317054 1, 40, 300; %e A317054 1, 50, 600, 1000; %e A317054 1, 60, 1000, 4000; %e A317054 1, 70, 1500, 10000, 10000; %e A317054 1, 80, 2100, 20000, 50000; %e A317054 1, 90, 2800, 35000, 150000, 100000; %e A317054 1, 100, 3600, 56000, 350000, 600000; %e A317054 1, 110, 4500, 84000, 700000, 2100000, 1000000; %e A317054 1, 120, 5500, 120000, 1260000, 5600000, 7000000; %t A317054 t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 10 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten %t A317054 Table[10^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten %o A317054 (PARI) T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1, k)+10*T(n-2, k-1))); %o A317054 tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Jul 20 2018 %Y A317054 Row sums give A015446. %Y A317054 Cf. A013617, A038303. %K A317054 tabf,nonn,easy %O A317054 0,4 %A A317054 _Zagros Lalo_, Jul 20 2018