This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317055 #17 Aug 08 2025 07:05:14 %S A317055 1,10,100,1,1000,20,10000,300,1,100000,4000,30,1000000,50000,600,1, %T A317055 10000000,600000,10000,40,100000000,7000000,150000,1000,1,1000000000, %U A317055 80000000,2100000,20000,50,10000000000,900000000,28000000,350000,1500,1,100000000000,10000000000,360000000,5600000,35000,60 %N A317055 Triangle read by rows: T(0,0) = 1; T(n,k) = 10*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. %C A317055 The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013617 ((1+10*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A038303 ((10+x)^n). %C A317055 The coefficients in the expansion of 1/(1-10*x-x^2) are given by the sequence generated by the row sums. %C A317055 The row sums are Denominators of continued fraction convergents to sqrt(26), see A041041. %C A317055 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 10.09901951359278483002... (a metallic mean) when n approaches infinity (see A176537: (5+sqrt(26))). %D A317055 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 102 %H A317055 Zagros Lalo, <a href="/A317055/a317055.pdf">Left-justified triangle</a> %H A317055 Zagros Lalo, <a href="/A317055/a317055_1.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (1 + 10x)^n</a> %H A317055 Zagros Lalo, <a href="/A317055/a317055_2.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (10 + x)^n</a> %e A317055 Triangle begins: %e A317055 1; %e A317055 10; %e A317055 100, 1; %e A317055 1000, 20; %e A317055 10000, 300, 1; %e A317055 100000, 4000, 30; %e A317055 1000000, 50000, 600, 1; %e A317055 10000000, 600000, 10000, 40; %e A317055 100000000, 7000000, 150000, 1000, 1; %e A317055 1000000000, 80000000, 2100000, 20000, 50; %e A317055 10000000000, 900000000, 28000000, 350000, 1500, 1; %e A317055 100000000000, 10000000000, 360000000, 5600000, 35000, 60; %t A317055 t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 10 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten %Y A317055 Row sums give A041041. %Y A317055 Cf. A013617, A038303, A176537. %Y A317055 Cf. A011557 (column 0), A053541 (column 1), A081140 (column 2). %K A317055 tabf,nonn,easy %O A317055 0,2 %A A317055 _Zagros Lalo_, Jul 21 2018