A317056 Depth of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.
0, 1, 2, 1, 3, 2, 4, 2, 2, 3, 5, 3, 3, 4, 6, 1, 4, 4, 5, 7, 2, 5, 5, 6, 3, 8, 2, 3, 6, 6, 7, 3, 4, 9, 3, 2, 4, 7, 7, 8, 4, 5, 10, 4, 3, 5, 8, 8, 4, 9, 5, 6, 11, 5, 4, 6, 9, 9, 5, 10, 6, 7, 12, 2, 6, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 7, 6, 8, 11, 11, 2, 7, 12
Offset: 1
Keywords
Examples
e(21025) = o[o[o]][o] has depth 3 so a(21025) = 3.
Crossrefs
Programs
-
Mathematica
nn=1000; radQ[n_]:=If[n===1,False,GCD@@FactorInteger[n][[All,2]]===1]; rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]]; Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn]; exp[n_]:=If[n===1,"o",With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]]; Table[Max@@Length/@Position[exp[n],_],{n,200}]
Comments