cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317076 Number of connected antichains of multisets with multiset-join a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 2, 8, 110, 7047
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			The a(3) = 8 connected antichains of multisets:
  (111),
  (112), (11)(12),
  (123), (13)(23), (12)(23), (12)(13), (12)(13)(23).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    cuu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],And[multijoin@@#==m,Length[csm[#]]==1]&];
    Table[Length[Join@@Table[cuu[m],{m,strnorm[n]}]],{n,5}]