This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317077 #8 Jan 16 2023 21:54:01 %S A317077 1,1,3,8,28,110,519,2749,16317,106425,755425,5781956,47384170, %T A317077 413331955,3818838624,37213866876,381108145231,4088785729738, %U A317077 45829237977692,535340785268513,6502943193997922,81984445333355812,1070848034863526547,14467833457108560375,201894571410270034773 %N A317077 Number of connected multiset partitions of normal multisets of size n. %C A317077 A multiset is normal if it spans an initial interval of positive integers. %H A317077 Andrew Howroyd, <a href="/A317077/b317077.txt">Table of n, a(n) for n = 0..500</a> %e A317077 The a(3) = 8 connected multiset partitions are (111), (1)(11), (1)(1)(1), (122), (2)(12), (112), (1)(12), (123). %t A317077 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A317077 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A317077 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]]; %t A317077 allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; %t A317077 Length/@Table[Join@@Table[Select[mps[m],Length[csm[#]]==1&],{m,allnorm[n]}],{n,8}] %o A317077 (PARI) %o A317077 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A317077 Connected(v)={my(u=vector(#v));for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1,k)*v[k]*u[n-k]));u} %o A317077 seq(n)={my(u=vector(n, k, x*Ser(EulerT(vector(n,i,binomial(i+k-1,i)))))); Vec(1+vecsum(Connected(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*u[i])))))} \\ _Andrew Howroyd_, Jan 16 2023 %Y A317077 Cf. A007716, A007718, A048143, A293994, A303837, A303838, A304716, A305078. %Y A317077 Cf. A317073, A317075, A317078, A317079, A317080. %K A317077 nonn %O A317077 0,3 %A A317077 _Gus Wiseman_, Jul 20 2018 %E A317077 Terms a(9) and beyond from _Andrew Howroyd_, Jan 16 2023