cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317077 Number of connected multiset partitions of normal multisets of size n.

This page as a plain text file.
%I A317077 #8 Jan 16 2023 21:54:01
%S A317077 1,1,3,8,28,110,519,2749,16317,106425,755425,5781956,47384170,
%T A317077 413331955,3818838624,37213866876,381108145231,4088785729738,
%U A317077 45829237977692,535340785268513,6502943193997922,81984445333355812,1070848034863526547,14467833457108560375,201894571410270034773
%N A317077 Number of connected multiset partitions of normal multisets of size n.
%C A317077 A multiset is normal if it spans an initial interval of positive integers.
%H A317077 Andrew Howroyd, <a href="/A317077/b317077.txt">Table of n, a(n) for n = 0..500</a>
%e A317077 The a(3) = 8 connected multiset partitions are (111), (1)(11), (1)(1)(1), (122), (2)(12), (112), (1)(12), (123).
%t A317077 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A317077 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A317077 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
%t A317077 allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
%t A317077 Length/@Table[Join@@Table[Select[mps[m],Length[csm[#]]==1&],{m,allnorm[n]}],{n,8}]
%o A317077 (PARI)
%o A317077 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
%o A317077 Connected(v)={my(u=vector(#v));for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1,k)*v[k]*u[n-k]));u}
%o A317077 seq(n)={my(u=vector(n, k, x*Ser(EulerT(vector(n,i,binomial(i+k-1,i)))))); Vec(1+vecsum(Connected(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*u[i])))))} \\ _Andrew Howroyd_, Jan 16 2023
%Y A317077 Cf. A007716, A007718, A048143, A293994, A303837, A303838, A304716, A305078.
%Y A317077 Cf. A317073, A317075, A317078, A317079, A317080.
%K A317077 nonn
%O A317077 0,3
%A A317077 _Gus Wiseman_, Jul 20 2018
%E A317077 Terms a(9) and beyond from _Andrew Howroyd_, Jan 16 2023