This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317081 #24 Apr 25 2025 08:45:31 %S A317081 1,1,1,2,3,5,5,9,11,16,20,30,34,50,58,79,96,129,152,203,243,307,375, %T A317081 474,563,707,850,1042,1246,1532,1815,2215,2632,3173,3765,4525,5323, %U A317081 6375,7519,8916,10478,12414,14523,17133,20034,23488,27422,32090,37285,43511,50559 %N A317081 Number of integer partitions of n whose multiplicities cover an initial interval of positive integers. %C A317081 Also the number of integer partitions of n with distinct section-sums, where the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. - _Gus Wiseman_, Apr 21 2025 %H A317081 Chai Wah Wu, <a href="/A317081/b317081.txt">Table of n, a(n) for n = 0..160</a> %e A317081 The a(1) = 1 through a(9) = 16 partitions: %e A317081 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A317081 (21) (31) (32) (42) (43) (53) (54) %e A317081 (211) (41) (51) (52) (62) (63) %e A317081 (221) (321) (61) (71) (72) %e A317081 (311) (411) (322) (332) (81) %e A317081 (331) (422) (432) %e A317081 (421) (431) (441) %e A317081 (511) (521) (522) %e A317081 (3211) (611) (531) %e A317081 (3221) (621) %e A317081 (4211) (711) %e A317081 (3321) %e A317081 (4221) %e A317081 (4311) %e A317081 (5211) %e A317081 (32211) %t A317081 normalQ[m_]:=Union[m]==Range[Max[m]]; %t A317081 Table[Length[Select[IntegerPartitions[n],normalQ[Length/@Split[#]]&]],{n,30}] %o A317081 (Python) %o A317081 from sympy.utilities.iterables import partitions %o A317081 def A317081(n): %o A317081 if n == 0: %o A317081 return 1 %o A317081 c = 0 %o A317081 for d in partitions(n): %o A317081 s = set(d.values()) %o A317081 if len(s) == max(s): %o A317081 c += 1 %o A317081 return c # _Chai Wah Wu_, Jun 22 2020 %Y A317081 The case with parts also covering an initial interval is A317088. %Y A317081 These partitions are ranked by A317090. %Y A317081 A000041 counts integer partitions, strict A000009. %Y A317081 A008284 counts partitions by length, strict A008289. %Y A317081 A047966 counts partitions with constant section-sums. %Y A317081 A048767 interchanges prime indices and prime multiplicities (Look-and-Say), see A048768. %Y A317081 A055932 lists numbers whose prime indices cover an initial interval. %Y A317081 A116540 counts normal set multipartitions. %Y A317081 A304442 counts partitions with equal run-sums, ranks A353833. %Y A317081 A381436 lists the section-sum partition of prime indices. %Y A317081 A381440 lists the Look-and-Say partition of prime indices. %Y A317081 Cf. A000837, A069799, A217605, A317082, A317084, A317085, A317087. %Y A317081 Cf. A003242, A116861, A239455, A353837, A364916, A381431, A381432, A381438. %K A317081 nonn %O A317081 0,4 %A A317081 _Gus Wiseman_, Jul 21 2018