This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317085 #16 Jun 29 2020 22:13:41 %S A317085 1,1,2,3,4,4,8,6,11,12,18,16,31,25,40,47,60,58,92,85,125,135,165,173, %T A317085 248,246,310,351,435,450,602,608,766,846,997,1098,1382,1421,1713,1912, %U A317085 2272,2413,2958,3118,3732,4135,4718,5127,6170,6550,7638,8396,9667,10433 %N A317085 Number of integer partitions of n whose sequence of multiplicities is a palindrome. %H A317085 Chai Wah Wu, <a href="/A317085/b317085.txt">Table of n, a(n) for n = 0..166</a> %H A317085 Wikipedia, <a href="https://en.wikipedia.org/wiki/Palindrome">Palindrome</a> %e A317085 The a(10) = 18 partitions: %e A317085 (ten), %e A317085 (91), (82), (73), (64), (55), %e A317085 (721), (631), (541), (532), %e A317085 (5221), (4411), (4321), (3322), %e A317085 (33211), (32221), (22222), %e A317085 (1111111111). %t A317085 Table[Length[Select[IntegerPartitions[n],Length/@Split[#]==Reverse[Length/@Split[#]]&]],{n,30}] %o A317085 (Python) %o A317085 from sympy.utilities.iterables import partitions %o A317085 def A317085(n): %o A317085 c = 1 %o A317085 for d in partitions(n,m=n*2//3): %o A317085 l = len(d) %o A317085 if l > 0: %o A317085 k = sorted(d.keys()) %o A317085 for i in range(l//2): %o A317085 if d[k[i]] != d[k[l-i-1]]: %o A317085 break %o A317085 else: %o A317085 c += 1 %o A317085 return c # _Chai Wah Wu_, Jun 22 2020 %Y A317085 Cf. A000041, A000837, A025065, A124010, A242414, A317086, A317087. %K A317085 nonn %O A317085 0,3 %A A317085 _Gus Wiseman_, Jul 21 2018