cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317087 Numbers whose prime factors span an initial interval of prime numbers and whose sequence of prime multiplicities is a palindrome.

This page as a plain text file.
%I A317087 #16 Jun 23 2020 05:52:23
%S A317087 1,2,4,6,8,16,30,32,36,64,90,128,210,216,256,270,300,512,810,900,1024,
%T A317087 1296,2048,2310,2430,2700,2940,3000,3150,4096,7290,7776,8100,8192,
%U A317087 9000,11550,16384,21870,24300,27000,30000,30030,32768,41160,44100,46656,47250,48510
%N A317087 Numbers whose prime factors span an initial interval of prime numbers and whose sequence of prime multiplicities is a palindrome.
%C A317087 3^m*10^k for k, m > 0 are terms of this sequence. - _Chai Wah Wu_, Jun 23 2020
%H A317087 Giovanni Resta, <a href="/A317087/b317087.txt">Table of n, a(n) for n = 1..10000</a>
%H A317087 Wikipedia, <a href="https://en.wikipedia.org/wiki/Palindrome">Palindrome</a>
%e A317087 The sequence of rows of A296150 indexed by the terms of this sequence begins: (1), (11), (21), (111), (1111), (321), (11111), (2211), (111111), (3221), (1111111), (4321), (222111), (11111111), (32221), (33211), (111111111), (322221), (332211).
%t A317087 nrmpalQ[n_]:=With[{f=If[n==1,{},FactorInteger[n]]}, And[PrimePi/@ Sort[First/@f] == Range[ Length[f]], Reverse[Last/@f] == Last/@f]]; Select[Range[100],nrmpalQ]
%t A317087 upto = 10^20; pL[n_] := Block[{p = Prime@Range@n, h = Ceiling[n/2]}, Take[p, h] Reverse@ If[n == 2 h, Take[p, -h], Prepend[ Take[p, 1-h], 1]]]; ric[v_, p_] := If[p == {}, AppendTo[L, v], Block[{w = v}, While[w <= upto, ric[w, Rest@ p]; w *= First@ p]]]; np = 1; L = {1}; While[(b = Times @@ Prime[Range@ np]) <= upto, ric[b, pL[np++]]]; Sort[L] (* _Giovanni Resta_, Jun 23 2020 *)
%o A317087 (Python)
%o A317087 from sympy import factorint, primepi
%o A317087 A317087_list = [1]
%o A317087 for n in range(1,10**5):
%o A317087     d = factorint(n)
%o A317087     k, l = sorted(d.keys()), len(d)
%o A317087     if l > 0 and l == primepi(max(d)):
%o A317087         for i in range(l//2):
%o A317087             if d[k[i]] != d[k[l-i-1]]:
%o A317087                 break
%o A317087         else:
%o A317087             A317087_list.append(n) # _Chai Wah Wu_, Jun 23 2020
%Y A317087 Cf. A025065, A055932, A124010, A133808, A242414, A296150, A317085, A317086.
%K A317087 nonn
%O A317087 1,2
%A A317087 _Gus Wiseman_, Jul 21 2018