This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317088 #16 Jun 30 2020 18:51:12 %S A317088 1,1,0,1,1,1,1,1,1,2,3,4,1,4,4,5,4,6,7,9,10,13,13,15,15,17,23,22,29, %T A317088 29,34,36,47,45,59,60,72,77,93,95,112,121,129,149,169,176,202,228,247, %U A317088 268,305,334,372,405,452,496,544,594,663,724,802 %N A317088 Number of normal integer partitions of n whose multiset of multiplicities is also normal. %C A317088 A multiset is normal if it spans an initial interval of positive integers. %H A317088 Chai Wah Wu, <a href="/A317088/b317088.txt">Table of n, a(n) for n = 0..192</a> %e A317088 The a(18) = 7 integer partitions are (543321), (5432211), (4433211), (4432221), (44322111), (4333221), (43322211). %t A317088 normalQ[m_]:=Union[m]==Range[Max[m]]; %t A317088 Table[Length[Select[IntegerPartitions[n],And[normalQ[#],normalQ[Length/@Split[#]]]&]],{n,30}] %o A317088 (Python) %o A317088 from sympy.utilities.iterables import partitions %o A317088 from sympy import integer_nthroot %o A317088 def A317088(n): %o A317088 if n == 0: %o A317088 return 1 %o A317088 c = 0 %o A317088 for d in partitions(n,k=integer_nthroot(2*n,2)[0]): %o A317088 l = len(d) %o A317088 if l > 0 and l == max(d): %o A317088 v = set(d.values()) %o A317088 if len(v) == max(v): %o A317088 c += 1 %o A317088 return c # _Chai Wah Wu_, Jun 23 2020 %Y A317088 Cf. A000009, A000041, A000837, A055932, A296150, A317081, A317082, A317086. %K A317088 nonn %O A317088 0,10 %A A317088 _Gus Wiseman_, Jul 21 2018