This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317097 #12 Aug 28 2018 19:55:19 %S A317097 1,1,2,4,9,20,46,106,248,583,1393,3343,8111,19801,48719,120489,299787, %T A317097 749258,1881216,4741340,11993672,30436507,77471471,197726053, %U A317097 505917729,1297471092,3334630086,8587369072,22155278381,57259037225,148222036272,384272253397 %N A317097 Number of rooted trees with n nodes where the number of distinct branches under each node is <= 2. %C A317097 There can be more than two branches as long as there are not three distinct branches. %H A317097 Andrew Howroyd, <a href="/A317097/b317097.txt">Table of n, a(n) for n = 1..200</a> %e A317097 The a(5) = 9 trees: %e A317097 ((((o)))) %e A317097 (((oo))) %e A317097 ((o(o))) %e A317097 ((ooo)) %e A317097 (o((o))) %e A317097 (o(oo)) %e A317097 ((o)(o)) %e A317097 (oo(o)) %e A317097 (oooo) %t A317097 semisameQ[u_]:=Length[Union[u]]<=2; %t A317097 nms[n_]:=nms[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],semisameQ],{ptn,IntegerPartitions[n-1]}]]; %t A317097 Table[Length[nms[n]],{n,10}] %o A317097 (PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, v[n+1]=sum(k=1, n-1, sumdiv(k, d, v[d])*sumdiv(n-k, d, v[d])/2) + sumdiv(n, d, v[n/d]*(1 - (d-1)/2)) ); v} \\ _Andrew Howroyd_, Aug 28 2018 %Y A317097 Cf. A000081, A000598, A001190, A003238, A055277, A111299, A292050, A298204, A301344, A317098. %K A317097 nonn %O A317097 1,3 %A A317097 _Gus Wiseman_, Aug 01 2018 %E A317097 Terms a(20) and beyond from _Andrew Howroyd_, Aug 28 2018