cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317141 In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition with Heinz number n.

This page as a plain text file.
%I A317141 #11 Jul 23 2018 09:15:18
%S A317141 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5,1,4,1,4,2,2,1,6,2,2,3,4,1,5,1,7,2,2,
%T A317141 2,8,1,2,2,7,1,5,1,4,4,2,1,10,2,4,2,4,1,7,2,7,2,2,1,9,1,2,4,11,2,5,1,
%U A317141 4,2,5,1,12,1,2,4,4,2,5,1,11,5,2,1,10,2
%N A317141 In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition with Heinz number n.
%C A317141 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A317141 Alois P. Heinz, <a href="/A317141/b317141.txt">Table of n, a(n) for n = 1..65536</a>
%e A317141 The a(24) = 6 partitions coarser than or equal to (2111) are (2111), (311), (221), (32), (41), (5), with Heinz numbers 24, 20, 18, 15, 14, 11.
%p A317141 g:= l-> `if`(l=[], {[]}, (t-> map(sort, map(x->
%p A317141         [seq(subsop(i=x[i]+t, x), i=1..nops(x)),
%p A317141         [x[], t]][], g(subsop(-1=[][], l)))))(l[-1])):
%p A317141 a:= n-> nops(g(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]))):
%p A317141 seq(a(n), n=1..100);  # _Alois P. Heinz_, Jul 22 2018
%t A317141 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A317141 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A317141 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A317141 ptncaps[ptn_]:=Union[Sort/@Apply[Plus,mps[ptn],{2}]];
%t A317141 Table[Length[ptncaps[primeMS[n]]],{n,100}]
%Y A317141 Cf. A002846, A056239, A213427, A215366, A265947, A296150, A296150, A299201, A300383, A317142, A317143.
%K A317141 nonn
%O A317141 1,4
%A A317141 _Gus Wiseman_, Jul 22 2018