This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317141 #11 Jul 23 2018 09:15:18 %S A317141 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5,1,4,1,4,2,2,1,6,2,2,3,4,1,5,1,7,2,2, %T A317141 2,8,1,2,2,7,1,5,1,4,4,2,1,10,2,4,2,4,1,7,2,7,2,2,1,9,1,2,4,11,2,5,1, %U A317141 4,2,5,1,12,1,2,4,4,2,5,1,11,5,2,1,10,2 %N A317141 In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition with Heinz number n. %C A317141 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A317141 Alois P. Heinz, <a href="/A317141/b317141.txt">Table of n, a(n) for n = 1..65536</a> %e A317141 The a(24) = 6 partitions coarser than or equal to (2111) are (2111), (311), (221), (32), (41), (5), with Heinz numbers 24, 20, 18, 15, 14, 11. %p A317141 g:= l-> `if`(l=[], {[]}, (t-> map(sort, map(x-> %p A317141 [seq(subsop(i=x[i]+t, x), i=1..nops(x)), %p A317141 [x[], t]][], g(subsop(-1=[][], l)))))(l[-1])): %p A317141 a:= n-> nops(g(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]))): %p A317141 seq(a(n), n=1..100); # _Alois P. Heinz_, Jul 22 2018 %t A317141 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A317141 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A317141 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A317141 ptncaps[ptn_]:=Union[Sort/@Apply[Plus,mps[ptn],{2}]]; %t A317141 Table[Length[ptncaps[primeMS[n]]],{n,100}] %Y A317141 Cf. A002846, A056239, A213427, A215366, A265947, A296150, A296150, A299201, A300383, A317142, A317143. %K A317141 nonn %O A317141 1,4 %A A317141 _Gus Wiseman_, Jul 22 2018