This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317143 #7 Jul 22 2018 22:54:27 %S A317143 1,2,3,4,4,5,6,8,6,8,7,9,10,12,16,8,9,12,16,10,12,16,11,14,15,18,20, %T A317143 24,32,12,16,13,21,22,25,27,28,30,36,40,48,64,14,18,20,24,32,15,18,20, %U A317143 24,32,16,17,26,33,35,42,44,45,50,54,56,60,72,80,96,128 %N A317143 In the ranked poset of integer partitions ordered by refinement, row n lists the Heinz numbers of integer partitions finer (less) than or equal to the integer partition with Heinz number n. %C A317143 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A317143 If x and y are partitions of the same integer and it is possible to produce x by further partitioning the parts of y, flattening, and sorting, then x <= y. %e A317143 The partitions finer than or equal to (2,2) are (2,2), (2,1,1), (1,1,1,1), with Heinz numbers 9, 12, 16, so the 9th row is {9, 12, 16}. %e A317143 Triangle begins: %e A317143 1 %e A317143 2 %e A317143 3 4 %e A317143 4 %e A317143 5 6 8 %e A317143 6 8 %e A317143 7 9 10 12 16 %e A317143 8 %e A317143 9 12 16 %e A317143 10 12 16 %e A317143 11 14 15 18 20 24 32 %e A317143 12 16 %e A317143 13 21 22 25 27 28 30 36 40 48 64 %e A317143 14 18 20 24 32 %e A317143 15 18 20 24 32 %e A317143 16 %e A317143 17 26 33 35 42 44 45 50 54 56 60 72 80 96 128 %t A317143 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A317143 Table[Union[Times@@@Map[Prime,Join@@@Tuples[IntegerPartitions/@primeMS[n]],{2}]],{n,12}] %Y A317143 Row lengths are A300383. %Y A317143 Cf. A002846, A056239, A213427, A215366, A265947, A296150, A299201, A317141. %K A317143 nonn,tabf %O A317143 1,2 %A A317143 _Gus Wiseman_, Jul 22 2018