A317146 Moebius function in the ranked poset of factorizations of n into factors > 1, evaluated at the minimum (the prime factorization of n).
0, 1, 1, -1, 1, -1, 1, 0, -1, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 0, 1, 1, 2, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -3, 1, -1, 1, 0, -1, 2, 1, 1, -1, 2, 1, 2, 1, -1, 1, 1
Offset: 1
Keywords
Examples
The factorizations of 60 followed by their Moebius values are the following. The second column sums to 0, as required. (2*2*3*5) -> -3 (2*2*15) -> 1 (2*3*10) -> 2 (2*5*6) -> 2 (2*30) -> -1 (3*4*5) -> 2 (3*20) -> -1 (4*15) -> -1 (5*12) -> -1 (6*10) -> -1 (60) -> 1
Crossrefs
Formula
Product_{k>=2} 1/(1-a(n)/n^s) = 1+P(s), Re(s)>1, where P(s) is the prime zeta function. - Tian Vlasic, Jan 25 2024
Comments