This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317165 #18 Sep 01 2021 22:23:14 %S A317165 1,1,5,241,188743,2734858573,892173483721887,7469920269852025033699, %T A317165 1841449549508718383891930251607, %U A317165 14973026148724796464136435753195418043885,4467880642339303169146446437381463615730321314015457,53810913396105573079543194840166969124601447333276658546225661505 %N A317165 Number of permutations of [n*(n+1)/2] with distinct lengths of increasing runs. %F A317165 a(n) = A317166(A000217(n)). %F A317165 a(n) >= A317273(n). %p A317165 g:= (n, s)-> `if`(n in s, 0, 1): %p A317165 b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s), %p A317165 `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t}) %p A317165 , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o)) %p A317165 end: %p A317165 a:= n-> b(n*(n+1)/2, 0$2, {}): %p A317165 seq(a(n), n=0..8); %t A317165 g[n_, s_] := If[MemberQ[s, n], 0, 1]; %t A317165 b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s], %t A317165 If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}], %t A317165 {j, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, o}]]; %t A317165 a[n_] := b[n(n+1)/2, 0, 0, {}]; %t A317165 Table[a[n], {n, 0, 8}] (* _Jean-François Alcover_, Sep 01 2021, after _Alois P. Heinz_ *) %Y A317165 Cf. A000217, A246292, A317130, A317166, A317273. %K A317165 nonn %O A317165 0,3 %A A317165 _Alois P. Heinz_, Jul 23 2018