This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317179 #19 Apr 03 2023 10:36:13 %S A317179 16661,19991,1160611,1190911,1688861,1988891,101616101,101919101, %T A317179 106111601,106191601,109111901,109161901,116010611,116696611, %U A317179 119010911,119969911,160080061,160101061,166080661,169060961,188868881,188898881,190080091,190101091,196090691,199080991 %N A317179 Palindromic invertible primes. %C A317179 a(38) = 10886968801 is the first term that uses all of the invertible digits (0, 1, 6, 8, 9). %C A317179 Number of terms < 10^(2k-1): 0, 0, 2, 6, 26, 78, 314, 1010, 3976, 15174, ..., . - _Robert G. Wilson v_, Jul 24 2018 %C A317179 Intersection of A002385 and A048890, or, respectively, A002113 and A048890. - _Felix Fröhlich_, Jul 24 2018 %H A317179 Robert G. Wilson v, <a href="/A317179/b317179.txt">Table of n, a(n) for n = 1..15175</a> %H A317179 C. K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=Strobogrammatic">strobogrammatic</a> %H A317179 Wikipedia, <a href="https://en.wikipedia.org/wiki/Strobogrammatic_number">Strobogrammatic number</a> %e A317179 16661 is a term because it is a prime and a palindrome as well; when rotated by 180 degrees it becomes 19991 that is also a prime. %t A317179 Select[ lst = {}; fQ[n_] := Block[{allset = {0, 1, 6, 8, 9}, id = IntegerDigits@n}, rid = Reverse[id /. {6 -> 9, 9 -> 6}];Union@Join[id, allset] == allset && PrimeQ@FromDigits@rid && rid != id]; Do[If[PrimeQ@n && fQ@n, AppendTo[lst, n]], {n, 1090000000}]; lst, # ==FromDigits[Reverse[IntegerDigits[#]]] &] %o A317179 (PARI) is_palandinv(n) = my(d=digits(n), ineligible_d=[2, 3, 4, 5, 7]); d==Vecrev(d) && #setintersect(vecsort(d), ineligible_d)==0 %o A317179 invert(n) = my(d=digits(n), e=[]); for(k=1, #d, if(d[k]==0, e=concat(e, [0])); if(d[k]==1, e=concat(e, [1])); if(d[k]==6, e=concat(e, [9])); if(d[k]==8, e=concat(e, [8])); if(d[k]==9, e=concat(e, [6]))); subst(Pol(e), x, 10) %o A317179 is(n) = my(d=digits(n)); is_palandinv(n) && n!=invert(n) && ispseudoprime(invert(n)) %o A317179 forprime(p=1, 2e8, if(is(p), print1(p, ", "))) \\ _Felix Fröhlich_, Jul 24 2018 %Y A317179 Cf. A000040, A002113, A002385, A045574, A048890. %K A317179 nonn,base %O A317179 1,1 %A A317179 _K. D. Bajpai_, Jul 23 2018