A317204 Expansion of n in the p-system based on convergents to sqrt(2).
0, 1, 10, 11, 20, 100, 101, 110, 111, 120, 200, 201, 1000, 1001, 1010, 1011, 1020, 1100, 1101, 1110, 1111, 1120, 1200, 1201, 2000, 2001, 2010, 2011, 2020, 10000, 10001, 10010, 10011, 10020, 10100, 10101, 10110, 10111, 10120, 10200, 10201, 11000, 11001, 11010, 11011
Offset: 0
References
- A. F. Horadam, Zeckendorf representations of positive and negative integers by Pell numbers, Applications of Fibonacci Numbers, Springer, Dordrecht, 1993, pp. 305-316.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Pellian Representations, The Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 449-488.
- Aviezri S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, Vol. 89, No. 6 (1982), pp. 353-361. See Table 2.
Crossrefs
Programs
-
Mathematica
pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; FromDigits @ IntegerDigits[Total[3^(s - 1)], 3]]; Array[pellp, 50, 0] (* Amiram Eldar, Mar 12 2022 *)
-
PARI
a(n) = { my (p=[1,2]); for (k=2, oo, if (n<=p[k], my (v=0, d); while (n, v+=10^k*d=n\p[k]; n-=d*p[k]; k--); return (v/10), p = concat(p, 2*p[k]+p[k-1]))) } \\ Rémy Sigrist, Mar 12 2022
Extensions
More terms from Amiram Eldar, Mar 12 2022
Comments