cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317205 Sprague-Grundy values for Wythoff's game.

This page as a plain text file.
%I A317205 #23 Apr 18 2025 03:18:14
%S A317205 0,1,2,2,0,1,3,4,5,6,4,5,3,2,7,5,3,4,0,6,8,6,7,8,1,9,10,3,7,8,6,9,0,1,
%T A317205 4,5,8,6,7,10,1,2,5,3,4,9,10,11,12,8,7,13,14,15,16,10,11,9,8,13,12,0,
%U A317205 15,16,17,14,11,9,10,7,12,14,2,13,17,6,18,15
%N A317205 Sprague-Grundy values for Wythoff's game.
%D A317205 E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 76.
%H A317205 Georg Fischer, <a href="/A317205/b317205.txt">Table of n, a(n) for n = 0..1274</a> (First 50 rows)
%H A317205 Uri Blass and Aviezri S. Fraenkel, <a href="https://doi.org/10.1016/0304-3975(90)90098-3">The Sprague-Grundy function for Wythoff's game</a>, Theoretical Computer Science 75.3 (1990): 311-333. See Table 2.
%H A317205 A. Dress, A. Flammenkamp and N. Pink, <a href="http://dx.doi.org/10.1006/aama.1998.0632">Additive periodicity of the Sprague-Grundy function of certain Nim games</a>, Adv. Appl. Math., 22, p. 249-270 (1999).
%H A317205 R. K. Guy, <a href="http://dx.doi.org/10.1007/978-1-4613-3554-2_9">The unity of combinatorics</a>, Proc. 25th Iranian Math. Conf, Tehran, (1994), Math. Appl 329 129-159, Kluwer Dordrecht 1995, Math. Rev. 96k:05001.
%H A317205 Gabriel Nivasch, <a href="https://library.slmath.org/books/Book56/files/43nivasch.pdf">More on the Sprague-Grundy function for Wythoff's game</a>, pages 377-410 in "Games of No Chance 3", MSRI Publications Volume 56, 2009. See Table 1.
%e A317205 Triangle begins as:
%e A317205   0;
%e A317205   1,  2;
%e A317205   2,  0,  1;
%e A317205   3,  4,  5,  6;
%e A317205   4,  5,  3,  2,  7;
%e A317205   5,  3,  4,  0,  6,  8;
%e A317205   6,  7,  8,  1,  9, 10,  3;
%e A317205   7,  8,  6,  9,  0,  1,  4,  5;
%t A317205 mex[list_] := mex[list] = Min[Complement[Range[0, Length[list]], list]];
%t A317205 move[Wnim, {a_, b_}] := move[Wnim, {a, b}] =
%t A317205    Union[Table[{i, b}, {i, 0, a - 1}], Table[{a, i}, {i, 0, b - 1}],
%t A317205     Table[{a - i, b - i}, {i, 1, Min[a, b]}]];
%t A317205 SpragueGrundy[game_, list_] := SpragueGrundy[game, list] =
%t A317205    mex[SpragueGrundy[game, #] & /@ move[game, list]];
%t A317205 t[n_, m_] := SpragueGrundy[Wnim, {n - 1, m - 1}]; (* so far copied from A004481 *)
%t A317205 Flatten[Table[t[n, m], {n, 12}, {m,1, n}]] (* _Georg Fischer_, Feb 22 2020 *)
%Y A317205 See A004481 for the full table.
%K A317205 nonn,tabl
%O A317205 0,3
%A A317205 _N. J. A. Sloane_, Aug 07 2018
%E A317205 More terms from _Georg Fischer_, Feb 22 2020