cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317246 Heinz numbers of supernormal integer partitions.

This page as a plain text file.
%I A317246 #9 Jul 26 2018 09:16:16
%S A317246 1,2,4,6,8,12,16,18,30,32,60,64,90,128,150,180,210,256,300,360,450,
%T A317246 512,540,600,1024,1350,1500,2048,2250,2310,2520,3780,4096,4200,5880,
%U A317246 8192,9450,10500,12600,13230,15750,16384,17640,18900,20580,26460,29400,30030
%N A317246 Heinz numbers of supernormal integer partitions.
%C A317246 An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.
%H A317246 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%e A317246 Sequence of supernormal integer partitions begins: (), (1), (11), (21), (111), (211), (1111), (221), (321), (11111), (3211), (111111), (3221), (1111111), (3321), (32211), (4321).
%t A317246 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A317246 supnrm[q_]:=Or[q=={}||Union[q]=={1},And[Union[q]==Range[Max[q]],supnrm[Sort[Length/@Split[q],Greater]]]];
%t A317246 Select[Range[10000],supnrm[primeMS[#]]&]
%Y A317246 Cf. A055932, A056239, A181819, A182850, A296150, A304465, A304687, A304818, A305732, A305733, A317089, A317090, A317245.
%K A317246 nonn
%O A317246 1,2
%A A317246 _Gus Wiseman_, Jul 24 2018