A317257 Heinz numbers of alternately co-strong integer partitions.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 16: {1,1,1,1} 32: {1,1,1,1,1} 2: {1} 17: {7} 33: {2,5} 3: {2} 19: {8} 34: {1,7} 4: {1,1} 20: {1,1,3} 35: {3,4} 5: {3} 21: {2,4} 36: {1,1,2,2} 6: {1,2} 22: {1,5} 37: {12} 7: {4} 23: {9} 38: {1,8} 8: {1,1,1} 24: {1,1,1,2} 39: {2,6} 9: {2,2} 25: {3,3} 40: {1,1,1,3} 10: {1,3} 26: {1,6} 41: {13} 11: {5} 27: {2,2,2} 42: {1,2,4} 12: {1,1,2} 28: {1,1,4} 43: {14} 13: {6} 29: {10} 44: {1,1,5} 14: {1,4} 30: {1,2,3} 45: {2,2,3} 15: {2,3} 31: {11} 46: {1,9}
Links
- Robert Price, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; totincQ[q_]:=Or[Length[q]<=1,And[OrderedQ[Length/@Split[q]],totincQ[Reverse[Length/@Split[q]]]]]; Select[Range[100],totincQ[Reverse[primeMS[#]]]&]
Extensions
Updated with corrected terminology by Gus Wiseman, Jun 04 2020
Comments