cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317302 Square array T(n,k) = (n - 2)*(k - 1)*k/2 + k, with n >= 0, k >= 0, read by antidiagonals upwards.

This page as a plain text file.
%I A317302 #41 Jan 28 2024 23:27:05
%S A317302 0,0,1,0,1,0,0,1,1,-3,0,1,2,0,-8,0,1,3,3,-2,-15,0,1,4,6,4,-5,-24,0,1,
%T A317302 5,9,10,5,-9,-35,0,1,6,12,16,15,6,-14,-48,0,1,7,15,22,25,21,7,-20,-63,
%U A317302 0,1,8,18,28,35,36,28,8,-27,-80,0,1,9,21,34,45,51,49,36,9,-35,-99,0,1,10,24,40,55,66
%N A317302 Square array T(n,k) = (n - 2)*(k - 1)*k/2 + k, with n >= 0, k >= 0, read by antidiagonals upwards.
%C A317302 Note that the formula gives several kinds of numbers, for example:
%C A317302 Row 0 gives 0 together with A258837.
%C A317302 Row 1 gives 0 together with A080956.
%C A317302 Row 2 gives A001477, the nonnegative numbers.
%C A317302 For n >= 3, row n gives the n-gonal numbers (see Crossrefs section).
%H A317302 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polnum01.jpg">Polygonal numbers</a>.
%H A317302 The OEIS, <a href="http://oeis.org/wiki/Polygonal_numbers">Polygonal numbers</a>.
%H A317302 University of Surrey, Dept. of Mathematics, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Figurate/figurate.html">Polygonal Numbers - or Numbers as Shapes</a>.
%H A317302 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FigurateNumber.html">Figurate Number</a>.
%H A317302 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolygonalNumber.html">Polygonal Number</a>.
%H A317302 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>.
%H A317302 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>
%F A317302 T(n,k) = A139600(n-2,k) if n >= 2.
%F A317302 T(n,k) = A139601(n-3,k) if n >= 3.
%e A317302 Array begins:
%e A317302 ------------------------------------------------------------------------
%e A317302 n\k  Numbers       Seq. No.   0   1   2   3   4    5    6    7    8
%e A317302 ------------------------------------------------------------------------
%e A317302 0    ............ (A258837):  0,  1,  0, -3, -8, -15, -24, -35, -48, ...
%e A317302 1    ............ (A080956):  0,  1,  1,  0, -2,  -5,  -9, -14, -20, ...
%e A317302 2    Nonnegatives  A001477:   0,  1,  2,  3,  4,   5,   6,   7,   8, ...
%e A317302 3    Triangulars   A000217:   0,  1,  3,  6, 10,  15,  21,  28,  36, ...
%e A317302 4    Squares       A000290:   0,  1,  4,  9, 16,  25,  36,  49,  64, ...
%e A317302 5    Pentagonals   A000326:   0,  1,  5, 12, 22,  35,  51,  70,  92, ...
%e A317302 6    Hexagonals    A000384:   0,  1,  6, 15, 28,  45,  66,  91, 120, ...
%e A317302 7    Heptagonals   A000566:   0,  1,  7, 18, 34,  55,  81, 112, 148, ...
%e A317302 8    Octagonals    A000567:   0,  1,  8, 21, 40,  65,  96, 133, 176, ...
%e A317302 9    9-gonals      A001106:   0,  1,  9, 24, 46,  75, 111, 154, 204, ...
%e A317302 10   10-gonals     A001107:   0,  1, 10, 27, 52,  85, 126, 175, 232, ...
%e A317302 11   11-gonals     A051682:   0,  1, 11, 30, 58,  95, 141, 196, 260, ...
%e A317302 12   12-gonals     A051624:   0,  1, 12, 33, 64, 105, 156, 217, 288, ...
%e A317302 13   13-gonals     A051865:   0,  1, 13, 36, 70, 115, 171, 238, 316, ...
%e A317302 14   14-gonals     A051866:   0,  1, 14, 39, 76, 125, 186, 259, 344, ...
%e A317302 15   15-gonals     A051867:   0,  1, 15, 42, 82, 135, 201, 280, 372, ...
%e A317302 ...
%Y A317302 Column 0 gives A000004.
%Y A317302 Column 1 gives A000012.
%Y A317302 Column 2 gives A001477, which coincides with the row numbers.
%Y A317302 Main diagonal gives A060354.
%Y A317302 Row 0 gives 0 together with A258837.
%Y A317302 Row 1 gives 0 together with A080956.
%Y A317302 Row 2 gives A001477, the same as column 2.
%Y A317302 For n >= 3, row n gives the n-gonal numbers: A000217 (n=3), A000290 (n=4), A000326 (n=5), A000384 (n=6), A000566 (n=7), A000567 (n=8), A001106 (n=9), A001107 (n=10), A051682 (n=11), A051624 (n=12), A051865 (n=13), A051866 (n=14), A051867 (n=15), A051868 (n=16), A051869 (n=17), A051870 (n=18), A051871 (n=19), A051872 (n=20), A051873 (n=21), A051874 (n=22), A051875 (n=23), A051876 (n=24), A255184 (n=25), A255185 (n=26), A255186 (n=27), A161935 (n=28), A255187 (n=29), A254474 (n=30).
%Y A317302 Cf. A139600, A139601.
%Y A317302 Cf. A303301 (similar table but with generalized polygonal numbers).
%K A317302 sign,tabl,easy
%O A317302 0,10
%A A317302 _Omar E. Pol_, Aug 09 2018