cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317304 Numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have a central valley.

Original entry on oeis.org

4, 5, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 42, 43, 44, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1

Views

Author

Omar E. Pol, Aug 27 2018

Keywords

Comments

Also triangle read by rows which gives the even-indexed rows of triangle A014132.
There are no triangular number (A000217) in this sequence.
For more information about the symmetric representation of sigma see A237593 and its related sequences.
Equivalently, numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have an even number of peaks. - Omar E. Pol, Sep 13 2018

Examples

			Written as an irregular triangle in which the row lengths are the positive even numbers, the sequence begins:
    4,   5;
   11,  12,  13,  14;
   22,  23,  24,  25,  26,  27;
   37,  38,  39,  40,  41,  42,  43,  44;
   56,  57,  58,  59,  60,  61,  62,  63,  64,  65;
   79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90;
  106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119;
...
Illustration of initial terms:
-------------------------------------------------
   k  sigma(k)  Diagram of the symmetry of sigma
-------------------------------------------------
                       _ _           _ _ _ _
                      | | |         | | | | |
                     _| | |         | | | | |
                 _ _|  _|_|         | | | | |
   4      7     |_ _ _|             | | | | |
   5      6     |_ _ _|             | | | | |
                                 _ _|_| | | |
                               _|    _ _|_| |
                             _|     |  _ _ _|
                            |      _|_|
                 _ _ _ _ _ _|  _ _|
  11     12     |_ _ _ _ _ _| |  _|
  12     28     |_ _ _ _ _ _ _| |
  13     14     |_ _ _ _ _ _ _| |
  14     24     |_ _ _ _ _ _ _ _|
.
For the first six terms of the sequence we can see in the above diagram that both Dyck path (the smallest and the largest) of the symmetric representation of sigma(k) have a central valley.
Compare with A317303.
		

Crossrefs

Row sums give A084367. n >= 1.
Column 1 gives A084849, n >= 1.
Column 2 gives A096376, n >= 1.
Right border gives the nonzero terms of A014106.
The union of A000217, A317303 and this sequence gives A001477.
Some other sequences related to the central peak or the central valley of the symmetric representation of sigma are A000217, A000384, A007606, A007607, A014105, A014132, A162917, A161983, A317303. See also A317306.