cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317305 Sum of divisors of the n-th number whose divisors increase by a factor of 2 or less.

This page as a plain text file.
%I A317305 #46 Oct 16 2023 22:25:21
%S A317305 1,3,7,12,15,28,31,39,42,60,56,72,63,91,90,96,124,120,120,168,127,144,
%T A317305 195,186,224,180,234,252,217,210,280,248,360,312,255,336,336,403,372,
%U A317305 392,378,363,480,372,546,508,399,468,465,504,434,576,600,504,504,560,546,744,728,511
%N A317305 Sum of divisors of the n-th number whose divisors increase by a factor of 2 or less.
%C A317305 Also consider the n-th number k with the property that the symmetric representation of sigma(k) has only one part. a(n) is the area of the diagram (see the example). For more information see A237593 and its related sequences.
%H A317305 Paolo Xausa, <a href="/A317305/b317305.txt">Table of n, a(n) for n = 1..10000</a>
%H A317305 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A317305 a(n) = A000203(A174973(n)).
%e A317305 Illustration of initial terms (n = 1..13):
%e A317305 .
%e A317305   a(n)
%e A317305         _ _   _   _   _       _       _   _   _       _       _   _   _
%e A317305    1   |_| | | | | | | |     | |     | | | | | |     | |     | | | | | |
%e A317305    3   |_ _|_| | | | | |     | |     | | | | | |     | |     | | | | | |
%e A317305         _ _|  _|_| | | |     | |     | | | | | |     | |     | | | | | |
%e A317305    7   |_ _ _|    _|_| |     | |     | | | | | |     | |     | | | | | |
%e A317305         _ _ _|  _|  _ _|     | |     | | | | | |     | |     | | | | | |
%e A317305   12   |_ _ _ _|  _|    _ _ _| |     | | | | | |     | |     | | | | | |
%e A317305         _ _ _ _| |    _|    _ _|     | | | | | |     | |     | | | | | |
%e A317305   15   |_ _ _ _ _|  _|     |    _ _ _| | | | | |     | |     | | | | | |
%e A317305                    |      _|   |  _ _ _|_| | | |     | |     | | | | | |
%e A317305                    |  _ _|    _| |    _ _ _|_| |     | |     | | | | | |
%e A317305         _ _ _ _ _ _| |      _|  _|   |  _ _ _ _|     | |     | | | | | |
%e A317305   28   |_ _ _ _ _ _ _|  _ _|  _|  _ _| |    _ _ _ _ _| |     | | | | | |
%e A317305                        |  _ _|  _|    _|   |    _ _ _ _|     | | | | | |
%e A317305                        | |     |     |  _ _|   |    _ _ _ _ _| | | | | |
%e A317305         _ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |   |  _ _ _ _ _|_| | | |
%e A317305   31   |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|   | |    _ _ _ _ _|_| |
%e A317305         _ _ _ _ _ _ _ _ _| | |     |      _|    _ _| |   |  _ _ _ _ _ _|
%e A317305   39   |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|  _ _|  _ _|   | |
%e A317305         _ _ _ _ _ _ _ _ _ _| | |       |   |    _|    _ _| |
%e A317305   42   |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|  _|  _|     |  _ _|
%e A317305                                | |       |  _|      _| |
%e A317305                                | |  _ _ _| |      _|  _|
%e A317305         _ _ _ _ _ _ _ _ _ _ _ _| | |  _ _ _|  _ _|  _|
%e A317305   60   |_ _ _ _ _ _ _ _ _ _ _ _ _| | |       |  _ _|
%e A317305                                    | |  _ _ _| |
%e A317305                                    | | |  _ _ _|
%e A317305         _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
%e A317305   56   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
%e A317305         _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
%e A317305   72   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
%e A317305         _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
%e A317305   63   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
%e A317305 .
%e A317305 The length of the largest Dyck path of the n-th diagram equals A047836(n).
%e A317305 The semilength equals A174973(n).
%e A317305 a(n) is the area of the n-th diagram.
%t A317305 A317305[upto_]:=Table[If[AllTrue[Map[Last[#]/First[#]&,Partition[Divisors[n],2,1]],#<=2&],DivisorSigma[1,n],Nothing],{n,upto}];
%t A317305 A317305[500] (* _Paolo Xausa_, Jan 12 2023 *)
%Y A317305 A317307 is a subsequence.
%Y A317305 Cf. A174973.
%Y A317305 Cf. A000203, A047836, A196020, A236104, A235791, A237048, A237591, A237593, A237270, A237271, A239660, A239931, A239932, A239933, A239934, A244050, A245092, A262626, A361208.
%K A317305 nonn
%O A317305 1,2
%A A317305 _Omar E. Pol_, Aug 25 2018