cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317307 Sum of divisors of powers of 2 and sum of divisors of even perfect numbers.

This page as a plain text file.
%I A317307 #34 Aug 26 2018 12:35:28
%S A317307 1,3,7,12,15,31,56,63,127,255,511,992,1023,2047,4095,8191,16256,16383,
%T A317307 32767,65535,131071,262143,524287,1048575,2097151,4194303,8388607,
%U A317307 16777215,33554431,67100672,67108863,134217727,268435455,536870911,1073741823,2147483647,4294967295,8589934591,17179738112,17179869183
%N A317307 Sum of divisors of powers of 2 and sum of divisors of even perfect numbers.
%C A317307 Sum of divisors of the numbers k such that the symmetric representation of sigma(k) has only one part, and apart from the central width, the rest of the widths are 1's.
%C A317307 Note that the above definition implies that the central width of the symmetric representation of sigma(k) is 1 or 2. For powers of 2 the central width is 1. For even perfect numbers the central width is 2 (see example).
%F A317307 a(n) = A000203(A317306(n)).
%e A317307 Illustration of initial terms. a(n) is the area (or the number of cells) of the n-th region of the diagram:
%e A317307 .        _ _   _   _   _               _                       _       _
%e A317307 .   1   |_| | | | | | | |             | |                     | |     | |
%e A317307 .   3   |_ _|_| | | | | |             | |                     | |     | |
%e A317307 .        _ _|  _|_| | | |             | |                     | |     | |
%e A317307 .   7   |_ _ _|    _|_| |             | |                     | |     | |
%e A317307 .        _ _ _|  _|  _ _|             | |                     | |     | |
%e A317307 .  12   |_ _ _ _|  _|                 | |                     | |     | |
%e A317307 .        _ _ _ _| |                   | |                     | |     | |
%e A317307 .  15   |_ _ _ _ _|              _ _ _| |                     | |     | |
%e A317307 .                               |  _ _ _|                     | |     | |
%e A317307 .                              _| |                           | |     | |
%e A317307 .                            _|  _|                           | |     | |
%e A317307 .                        _ _|  _|                             | |     | |
%e A317307 .                       |  _ _|                               | |     | |
%e A317307 .                       | |                          _ _ _ _ _| |     | |
%e A317307 .        _ _ _ _ _ _ _ _| |                         |  _ _ _ _ _|     | |
%e A317307 .  31   |_ _ _ _ _ _ _ _ _|                         | |    _ _ _ _ _ _| |
%e A317307 .                                                _ _| |   |  _ _ _ _ _ _|
%e A317307 .                                            _ _|  _ _|   | |
%e A317307 .                                           |    _|    _ _| |
%e A317307 .                                          _|  _|     |  _ _|
%e A317307 .                                         |  _|      _| |
%e A317307 .                                    _ _ _| |      _|  _|
%e A317307 .                                   |  _ _ _|  _ _|  _|
%e A317307 .                                   | |       |  _ _|
%e A317307 .                                   | |  _ _ _| |
%e A317307 .                                   | | |  _ _ _|
%e A317307 .        _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
%e A317307 .   56  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
%e A317307 .                                       | |
%e A317307 .                                       | |
%e A317307 .        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
%e A317307 .   63  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
%e A317307 .
%e A317307 The diagram shows the first eight terms of the sequence. The symmetric representation of sigma of the numbers A317306: 1, 2, 4, 6, 8, 16, 28, 32, ..., has only one part, and apart from the central width, the rest of the widths are 1's.
%t A317307 DivisorSigma[1, #] &@ Union[2^Range[0, Floor@ Log2@ Last@ #], #] &@ Array[2^(# - 1) (2^# - 1) &@ MersennePrimeExponent@ # &, 7] (* _Michael De Vlieger_, Aug 25 2018, after Robert G. Wilson v at A000396 *)
%Y A317307 Union of nonzero terms of A000225 and A139256.
%Y A317307 Odd terms give the nonzeros terms of A000225.
%Y A317307 Even terms give A139256.
%Y A317307 Subsequence of A317305.
%Y A317307 Cf. A249351 (the widths).
%Y A317307 Cf. A000203, A000396, A196020, A236104, A235791, A237048, A237591, A237593, A237270, A237271, A239660, A239931, A239932, A239933, A239934, A244050, A245092, A262626, A317306.
%K A317307 nonn,easy
%O A317307 1,2
%A A317307 _Omar E. Pol_, Aug 25 2018