This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317309 #43 Nov 26 2020 23:36:27 %S A317309 3,5,11,13,23,37,41,43,59,61,79,83,89,107,109,113,137,139,149,151,173, %T A317309 179,181,211,223,227,229,257,263,269,271,307,311,313,317,353,359,367, %U A317309 373,409,419,421,431,433,467,479,487,491,541,547,557,599,601,607,613,617,619,673,677,683,691,701 %N A317309 Primes p such that the largest Dyck path of the symmetric representation of sigma(p) has a central valley. %C A317309 Except for the first term 3, primes p such that both Dyck paths of the symmetric representation of sigma(p) have a central valley. %C A317309 Note that the symmetric representation of sigma of an odd prime consists of two perpendicular bars connected by an irregular zig-zag path (see example). %C A317309 Odd primes and the terms of this sequence are easily identifiable in the pyramid described in A245092 (see Links section). %C A317309 For more information about the mentioned Dyck paths see A237593. %C A317309 Equivalently, primes p such that the largest Dyck path of the symmetric representation of sigma(p) has an even number of peaks. %H A317309 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the pyramid (first 16 levels)</a> %e A317309 Illustration of initial terms: %e A317309 ------------------------------------------------- %e A317309 p sigma(p) Diagram of the symmetry of sigma %e A317309 ------------------------------------------------- %e A317309 _ _ _ _ %e A317309 | | | | | | | | %e A317309 _ _|_| | | | | | | %e A317309 3 4 |_ _| _|_| | | | | %e A317309 _ _ _| | | | | %e A317309 5 6 |_ _ _| | | | | %e A317309 _ _|_| | | %e A317309 _| _ _|_| %e A317309 _| | %e A317309 | _| %e A317309 _ _ _ _ _ _| _ _| %e A317309 11 12 |_ _ _ _ _ _| | %e A317309 _ _ _ _ _ _ _| %e A317309 13 14 |_ _ _ _ _ _ _| %e A317309 . %e A317309 For the first four terms of the sequence we can see in the above diagram that the largest Dyck path of the symmetric representation of sigma(p) has a central valley. %e A317309 Compare with A317308. %o A317309 (Python) %o A317309 from sympy import isprime %o A317309 for x in range(1,100): %o A317309 for x in range(2*x**2+2*x-(2*x//2),2*x**2+2*x+(2*x//2)+1): %o A317309 if isprime(x): %o A317309 print(x, end=', ') # _César Aguilera_, Nov 12 2020 %Y A317309 Primes in A161983. %Y A317309 Except for the first term 3, primes in A317304. %Y A317309 The union of A317308 and this sequence gives A000040. %Y A317309 Primes of the triangle of A060300. - _César Aguilera_, Nov 12 2020 %Y A317309 Cf. A000203, A065091, A196020, A236104, A235791, A237048, A237591, A237593, A237270, A239660, A239929, A239931, A239933, A244050, A245092, A262626. %K A317309 nonn %O A317309 1,1 %A A317309 _Omar E. Pol_, Aug 29 2018