A317315 Multiples of 15 and odd numbers interleaved.
0, 1, 15, 3, 30, 5, 45, 7, 60, 9, 75, 11, 90, 13, 105, 15, 120, 17, 135, 19, 150, 21, 165, 23, 180, 25, 195, 27, 210, 29, 225, 31, 240, 33, 255, 35, 270, 37, 285, 39, 300, 41, 315, 43, 330, 45, 345, 47, 360, 49, 375, 51, 390, 53, 405, 55, 420, 57, 435, 59, 450, 61, 465, 63, 480, 65, 495, 67, 510, 69
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Mathematica
a[n_] := If[OddQ[n], n, 15*n/2]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
-
PARI
concat(0, Vec(x*(1 + 15*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018
Formula
a(2n) = 15*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 15*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 15*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 13/2^s). - Amiram Eldar, Oct 25 2023
Comments