This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317343 #7 Aug 06 2018 06:46:05 %S A317343 1,1,3,43,1945,178041,26792971,5940440563,1812303908913, %T A317343 725818277844145,368664266359757971,231291789356545214331, %U A317343 175516846850044015048393,158383499766971409675254953,167568661592262324239839114395,205391322843896611716680298647491,288693442696565330249751284373878881,461220054642000786943064376254671287393 %N A317343 E.g.f. A(x) satisfies: [x^n] exp(n^2*x) / A(x)^n = 0 for n >= 1. %C A317343 It is remarkable that the logarithm of the e.g.f. A(x) should be an integer series. %H A317343 Paul D. Hanna, <a href="/A317343/b317343.txt">Table of n, a(n) for n = 0..300</a> %F A317343 a(n) ~ sqrt(1-c) * 2^(2*n - 3/2) * n^(2*n-1) / (exp(2*n) * c^(n - 1/2) * (2-c)^(n-1)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - _Vaclav Kotesovec_, Aug 06 2018 %e A317343 E.g.f.: A(x) = 1 + x + 3*x^2/2! + 43*x^3/3! + 1945*x^4/4! + 178041*x^5/5! + 26792971*x^6/6! + 5940440563*x^7/7! + 1812303908913*x^8/8! + ... %e A317343 ILLUSTRATION OF DEFINITION. %e A317343 The table of coefficients of x^k/k! in exp(n^2*x) / A(x)^n begins: %e A317343 n=1: [1, 0, -2, -36, -1764, -167280, -25620600, -5737974480, ...]; %e A317343 n=2: [1, 2, 0, -88, -4160, -371328, -55329536, -12201990400, ...]; %e A317343 n=3: [1, 6, 30, 0, -7812, -698184, -97733304, -20791334880, ...]; %e A317343 n=4: [1, 12, 136, 1296, 0, -1171968, -168658176, -33909447168, ...]; %e A317343 n=5: [1, 20, 390, 7220, 113020, 0, -265712600, -55963975600, ...]; %e A317343 n=6: [1, 30, 888, 25704, 709056, 16600320, 0, -84622337280, ...]; %e A317343 n=7: [1, 42, 1750, 72072, 2909340, 112245672, 3684715944, 0, ...]; %e A317343 n=8: [1, 56, 3120, 172640, 9455488, 508540416, 26199517696, 1150524892160, 0, ...]; ... %e A317343 in which the coefficient of x^n in row n forms a diagonal of zeros. %e A317343 LOGARITHMIC PROPERTY. %e A317343 The logarithm of the e.g.f. is the integer series: %e A317343 log(A(x)) = x + x^2 + 6*x^3 + 74*x^4 + 1400*x^5 + 35676*x^6 + 1140328*x^7 + 43740848*x^8 + 1954336608*x^9 + 99561874080*x^10 + ... + A317344(n)*x^n + ... %o A317343 (PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^2*x +x*O(x^#A)) / Ser(A)^m )[m+1]/m ); n!*A[n+1]} %o A317343 for(n=0,20,print1(a(n),", ")) %Y A317343 Cf. A317344, A317345. %K A317343 nonn %O A317343 0,3 %A A317343 _Paul D. Hanna_, Jul 26 2018