This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317348 #11 Aug 13 2018 23:49:43 %S A317348 1,1,3,31,783,35551,2465943,238958791,30604867023,4988281843471, %T A317348 1006426188747783,246050857141536151,71658459729884788863, %U A317348 24512979124556543501791,9733113984959380709677623,4440214540533789234079579111,2306721251730615059447461056303,1354037785009235729190621178158511 %N A317348 E.g.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - exp(-n*x) )^n = 1. %H A317348 Vaclav Kotesovec, <a href="/A317348/b317348.txt">Table of n, a(n) for n = 0..160</a> %F A317348 E.g.f. A(x) satisfies: %F A317348 (1) 1 = Sum_{n>=0} ( 1/A(x) - exp(-n*x) )^n. %F A317348 (2) A(x) = Sum_{n>=0} ( 1/A(x) - exp(-(n+1)*x) )^n. %F A317348 (3) 1 = Sum_{n>=0} exp(-(n+1)*x) * ( 1/A(x) - exp(-(n+1)*x) )^n. %F A317348 (4) A(x)^2 = 2*A(x) * [ Sum_{n>=0} (n+1) * ( 1/A(x) - exp(-(n+1)*x) )^n ] - [ Sum_{n>=0} (n+1) * ( 1/A(x) - exp(-(n+2)*x) )^n ]. %F A317348 (5) A(x) = [ Sum_{n>=1} n*(n+1)/2 * exp(-(n+1)*x) * ( 1/Ser(A) - exp(-(n+1)*x) )^(n-1) ] / [ Sum_{n>=1} n^2 * exp(-n*x) * ( 1/Ser(A) - exp(-n*x) )^(n-1) ]. %F A317348 a(n) ~ sqrt(Pi) * n^(2*n + 1/2) / (4*sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - _Vaclav Kotesovec_, Aug 10 2018 %e A317348 E.g.f.: A(x) = 1 + x + 3*x^2/2! + 31*x^3/3! + 783*x^4/4! + 35551*x^5/5! + 2465943*x^6/6! + 238958791*x^7/7! + 30604867023*x^8/8! + 4988281843471*x^9/9! + ... %e A317348 such that %e A317348 1 = 1 + (1/A(x) - exp(-x)) + (1/A(x) - exp(-2*x))^2 + (1/A(x) - exp(-3*x))^3 + (1/A(x) - exp(-4*x))^4 + (1/A(x) - exp(-5*x))^5 + (1/A(x) - exp(-6*x))^6 + (1/A(x) - exp(-7*x))^7 + (1/A(x) - exp(-8*x))^8 + ... %e A317348 Also, %e A317348 A(x) = 1 + (1/A(x) - exp(-2*x)) + (1/A(x) - exp(-3*x))^2 + (1/A(x) - exp(-4*x))^3 + (1/A(x) - exp(-5*x))^4 + (1/A(x) - exp(-6*x))^5 + (1/A(x) - exp(-7*x))^6 + (1/A(x) - exp(-8*x))^7 + (1/A(x) - exp(-9*x))^8 + ... %o A317348 (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ( 1/Ser(A) - exp(-(m+1)*x +x*O(x^#A)) )^m ) )[#A]/2 ); n!*A[n+1]} %o A317348 for(n=0, 20, print1(a(n), ", ")) %Y A317348 Cf. A317349. %K A317348 nonn %O A317348 0,3 %A A317348 _Paul D. Hanna_, Aug 02 2018