This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317349 #31 Aug 12 2018 05:09:45 %S A317349 1,1,2,7,42,372,4269,59047,946557,17175289,347208299,7730688884, %T A317349 187911183701,4951155672353,140575561645293,4279249948000903, %U A317349 139050095246322895,4804391579357016747,175902340755219278039,6803436418471129704925,277202774381386656583959,11868116969794805874111831 %N A317349 G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - (1-x)^n )^n = 1. %H A317349 Paul D. Hanna, <a href="/A317349/b317349.txt">Table of n, a(n) for n = 0..300</a> %F A317349 G.f. A(x) satisfies: %F A317349 (1) 1 = Sum_{n>=0} ( 1/A(x) - (1-x)^n )^n. %F A317349 (2) A(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(n+1) )^n. %F A317349 (3) 1 = Sum_{n>=0} ( 1/A(x) - (1-x)^(n+1) )^n * (1-x)^(n+1). %F A317349 (4) A(x)^2 = 2*A(x) * [ Sum_{n>=0} (n+1) * ( 1/A(x) - (1-x)^(n+1) )^n ] - [ Sum_{n>=0} (n+1) * ( 1/A(x) - (1-x)^(n+2) )^n ]. %F A317349 (5) A(x) = [ Sum_{n>=1} n*(n+1)/2 * (1-x)^(n+1) * ( 1/Ser(A) - (1-x)^(n+1) )^(n-1) ] / [ Sum_{n>=1} n^2 * (1-x)^n * ( 1/Ser(A) - (1-x)^n )^(n-1) ]. %F A317349 a(n) ~ 2^(log(2)/2 - 5/2) * n^n / (sqrt(1-log(2)) * exp(n) * (log(2))^(2*n+1)). - _Vaclav Kotesovec_, Aug 06 2018 %e A317349 G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 372*x^5 + 4269*x^6 + 59047*x^7 + 946557*x^8 + 17175289*x^9 + 347208299*x^10 + ... %e A317349 such that %e A317349 1 = 1 + (1/A(x) - (1-x)) + (1/A(x) - (1-x)^2)^2 + (1/A(x) - (1-x)^3)^3 + (1/A(x) - (1-x)^4)^4 + (1/A(x) - (1-x)^5)^5 + (1/A(x) - (1-x)^6)^6 + (1/A(x) - (1-x)^7)^7 + (1/A(x) - (1-x)^8)^8 + ... %e A317349 Also, %e A317349 A(x) = 1 + (1/A(x) - (1-x)^2) + (1/A(x) - (1-x)^3)^2 + (1/A(x) - (1-x)^4)^3 + (1/A(x) - (1-x)^5)^4 + (1/A(x) - (1-x)^6)^5 + (1/A(x) - (1-x)^7)^6 + (1/A(x) - (1-x)^8)^7 + (1/A(x) - (1-x)^9)^8 + ... %o A317349 (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( 1/Ser(A) - (1-x)^(m+1) )^m ) )[#A]/2 ); A[n+1]} %o A317349 for(n=0,25, print1(a(n),", ")) %Y A317349 Cf. A317339, A317348, A317340, A317666, A317667 A317668. %K A317349 nonn %O A317349 0,3 %A A317349 _Paul D. Hanna_, Aug 02 2018